A note on strong compactness and resurrectibility
نویسنده
چکیده
We construct a model containing a proper class of strongly compact cardinals in which no strongly compact cardinal κ is κ supercompact and in which every strongly compact cardinal has its strong compactness resurrectible.
منابع مشابه
A note on essentially left $phi$-contractible Banach algebras
In this note, we show that cite[Corollary 3.2]{sad} is not always true. In fact, we characterize essential left $phi$-contractibility of the group algebras in terms of compactness of its related locally compact group. Also, we show that for any compact commutative group $G$, $L^{2}(G)$ is always essentially left $phi$-contractible. We discuss the essential left $phi$-contractibility of some Fou...
متن کاملA geometrical approach to find the preferred intonation of chords
Previous work suggested that convexity in the Euler lattice can be interpreted in terms of consonance [1]. In this paper, a second hypothesis is presented that states that compactness in the Euler lattice is an indication of consonance. The convexity and compactness of chords is used as the basis of a model for the preferred intonation of chords in isolation (without a musical context). It is i...
متن کاملStrong Lp Convergence Associated with Rellich-type Discrete Compactness for Discontinuous Galerkin FEM
In a preceding paper, we proved the discrete compactness properties of Rellich type for some 2D discontinuous Galerkin finite element methods (DGFEM), that is, the strong L2 convergence of some subfamily of finite element functions bounded in an H1-like mesh-dependent norm. In this note, we will show the strong Lp convergence of the above subfamily for 1 ≤ p < ∞. To this end, we will utilize th...
متن کاملA Note on Extensions of In nitary Logic
We show that a strong form of the so called Lindstrr om's Theorem 4] fails to generalize to extensions of L ! and L : For weakly compact there is no strongest extension of L ! with the (;)-compactness property and the LL owenheim-Skolem theorem down to. With an additional set-theoretic assumption, there is no strongest extension of L with the (;)-compactness property and the LL owenheim-Skolem ...
متن کاملON COMPACTNESS AND G-COMPLETENESS IN FUZZY METRIC SPACES
In [Fuzzy Sets and Systems 27 (1988) 385-389], M. Grabiec in- troduced a notion of completeness for fuzzy metric spaces (in the sense of Kramosil and Michalek) that successfully used to obtain a fuzzy version of Ba- nachs contraction principle. According to the classical case, one can expect that a compact fuzzy metric space be complete in Grabiecs sense. We show here that this is not the case,...
متن کامل