Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.

نویسندگان

  • Yang Liao
  • Ya Cheng
  • Changning Liu
  • Jiangxin Song
  • Fei He
  • Yinglong Shen
  • Danping Chen
  • Zhizhan Xu
  • Zhichao Fan
  • Xunbin Wei
  • Koji Sugioka
  • Katsumi Midorikawa
چکیده

We report on the fabrication of nanofluidic channels directly buried in silicate glass with transverse widths down to less than 50 nm using three-dimensional (3D) femtosecond laser direct writing. Using this technique, integrated micro-nanofluidic systems have been produced by simultaneously writing micro- and nanofluidic channels arranged into various 3D configurations in glass substrates. The fabricated micro- and nanofluidic systems have been used to demonstrate DNA analysis, e.g. stretching of DNA molecules. Our technique offers new opportunities to develop novel 3D micro-nanofluidic systems for a variety of lab-on-a-chip applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond Laser 3D Fabrication in Porous Glass for Micro- and Nanofluidic Applications

The creation of complex three-dimensional (3D) fluidic systems composed of hollow microand nanostructures embedded in transparent substrates has attracted significant attention from both scientific and applied research communities. However, it is by now still a formidable challenge to build 3D microand nanofluidic structures with arbitrary configurations using conventional planar lithographic f...

متن کامل

Fabrication and Characterization of Nanofluidic Channels for Studying Molecular Dynamics in Confined Environments

This thesis has characterized the applicability and limitation of PDMS micromolding and the substrate bonding techniques including both anodic (Si-glass) and thermal fusion (glass-glass) bonding, in fabricating sub-100-nm thick nanofluidic channels, which will be used for a controlled experimental study of molecular and fluidic transport in confined space. It is found that the fabrication of na...

متن کامل

Internal Laser Writing of High-Aspect-Ratio Microfluidic Structures in Silicate Glasses for Lab-on-a-Chip Applications

Femtosecond laser direct writing is unique in allowing for fabrication of 3D microand nanofluidic structures, thereby enabling rapid and efficient manipulation of fluidic dynamics in 3D space to realize innovative functionalities. Here, I discuss the challenges in producing fully functional and highly integrated 3D microand nanofluidic systems with potential applications ranging from chemical a...

متن کامل

Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding.

We have characterized glass-glass and glass-Si bonding processes for the fabrication of wide, shallow nanofluidic channels with depths down to the nanometer scale. Nanochannels on glass or Si substrate are formed by reactive ion etching or a wet etching process, and are sealed with another flat substrate either by glass-glass fusion bonding (550 degrees C) or an anodic bonding process. We demon...

متن کامل

Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 13 8  شماره 

صفحات  -

تاریخ انتشار 2013