Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes.
نویسندگان
چکیده
Type 2 diabetes mellitus is a complex metabolic disease, and cardiovascular disease is a leading complication of diabetes. Epicardial adipose tissue surrounding the heart displays biochemical, thermogenic, and cardioprotective properties. However, the metabolic cross-talk between epicardial fat and the myocardium is largely unknown. This study sought to understand epicardial adipose tissue metabolism from heart failure patients with or without diabetes. We aimed to unravel possible differences in glucose and lipid metabolism between human epicardial and subcutaneous adipocytes and elucidate the potential underlying mechanisms involved in heart failure. Insulin-stimulated [(14)C]glucose uptake and isoproterenol-stimulated lipolysis were measured in isolated epicardial and subcutaneous adipocytes. The expression of genes involved in glucose and lipid metabolism was analyzed by reverse transcription-polymerase chain reaction in adipocytes. In addition, epicardial and subcutaneous fatty acid composition was analyzed by high-resolution proton nuclear magnetic resonance spectroscopy. The difference between basal and insulin conditions in glucose uptake was significantly decreased (P= 0.006) in epicardial compared with subcutaneous adipocytes. Moreover, a significant (P< 0.001) decrease in the isoproterenol-stimulated lipolysis was also observed when the two fat depots were compared, and it was strongly correlated with lipolysis, lipid storage, and inflammation-related gene expression. Moreover, the fatty acid composition of these tissues was significantly altered by diabetes. These results emphasize potential metabolic differences between both fat depots in the presence of heart failure and highlight epicardial fat as a possible therapeutic target in situ in the cardiac microenvironment.
منابع مشابه
Letter to the Editor: The effect of autonomic nervous system on the impairment of glucose uptake and lipid metabolism in epicardial adipose tissue.
TO THE EDITOR: We read with great interest and excitement the recently published work of Burgeiro et al. (3) about the impairment of glucose uptake and lipid metabolism in epicardial adipose tissue from heart failure patients with or without diabetes. The authors stated the difference between basal and insulin conditions in glucose uptake within epicardial compared with subcutaneous adipocytes....
متن کاملComparison of Epicardial Adipose Tissue Fatty Acid Profile in Cardiovascular Disease Patients Diabetic and Non-Diabetic
ABSTRACT Background and Objective: The relationship between diabetes mellitus and increased risk of cardiovascular diseases has been demonstrated. The aim of this study was to determine the fatty acid profile of epicardial adipose tissue in diabetic and non-diabetic patients with cardiovascular disease. &nb...
متن کاملMetabolic remodelling in diabetic cardiomyopathy
Diabetes is a risk factor for heart failure and cardiovascular mortality with specific changes to myocardial metabolism, energetics, structure, and function. The gradual impairment of insulin production and signalling in diabetes is associated with elevated plasma fatty acids and increased myocardial free fatty acid uptake and activation of the transcription factor PPARα. The increased free fat...
متن کاملتاثیر 12 هفته تمرینات مقاومتی بر سطوح آپلین، امنتین-1 و مقاومت به انسولین در زنان مسن دارای اضافه وزن مبتلا به دیابت نوع 2
Background and Objective: Nowadays, it has been recognized that Apelin and Omentin as the hormones secreted by adipose tissue, can be effective in regulating metabolism. The purpose of the present study was to determine the impact of 12 weeks of resistance training exercises on the Apelin, Omentin-1 levels and insulin resistance in overweight elderly women suffering from type 2 diabetes. Materi...
متن کاملThe effect of aerobic exercise on epicardial adipose tissue, insulin resistance, and some liver enzymes in high-fat diet-induced obesity male wistar rat
Background and Aim: Due to the prevalence and socio-economic consequences of obesity in mortality, cardiovascular (CAD) and nonalcoholic fatty liver disease the effectiveness of aerobic exercise on epicardial adipose tissue (EAT), insulin resistance (IR) and some liver enzymes of high-fat diet-induced obesity male wistar rats was investigated. Methods: Thirty-two male Wistar rats with an averag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 310 7 شماره
صفحات -
تاریخ انتشار 2016