A Bayesian Spatial Model for Exceedances Over a Threshold

نویسنده

  • Fernando Ferraz
چکیده

Extreme value theory focuses on the study of rare events and uses asymptotic properties to estimate their associated probabilities. Easy availability of georeferenced data has prompted a growing interest in the analysis of spatial extremes. Most of the work so far has focused on models that can handle block maxima, with few examples of spatial models for exceedances over a threshold. Using a hierarchical representation, we propose a spatial process, that is obtained by perturbing a Pareto process. Our approach uses conditional independence at each location, within a hierarchical model for the spatial field of exceedances. The model has the ability to capture both, asymptotic dependence and independence. We use a Bayesian approach for inference of the process parameters that can be efficiently applied to a large number of spatial locations. We assess the flexibility of the model and the accuracy of the inference by considering some simulated examples. We illustrate the model with an analysis of data for temperature and rainfall in California.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian Hierarchical Generalized Pareto Spatial Model for Exceedances Over a Threshold

Extreme value theory focuses on the study of rare events and uses asymptotic properties to estimate their associated probabilities. Easy availability of georeferenced data has prompted a growing interest in the analysis of spatial extremes. Most of the work so far has focused on models that can handle block maxima, with few examples of spatial models for exceedances over a threshold. Using a hi...

متن کامل

Spatial modeling for risk assessment of extreme values from environmental time series: A Bayesian nonparametric approach

We propose an approach to modeling and risk assessment for extremes of environmental processes evolving over time and recorded at a number of spatial locations. We follow an extension of the point process approach to analysis of extremes under which the times of exceedances over a given threshold are assumed to arise from a non-homogeneous Poisson process. To achieve flexible shapes and tempora...

متن کامل

A space-time skew-t model for threshold exceedances.

To assess the compliance of air quality regulations, the Environmental Protection Agency (EPA) must know if a site exceeds a pre-specified level. In the case of ozone, the level for compliance is fixed at 75 parts per billion, which is high, but not extreme at all locations. We present a new space-time model for threshold exceedances based on the skew-t process. Our method incorporates a random...

متن کامل

“ Models for the exceedances of high thresholds over the precipitation daily totals in Athens , Greece ”

Extreme precipitation events have significant environmental consequences because they may cause considerable damages to urban as well as rural areas. The aim of this work is to construct a threshold model which will describe the exceedances over a threshold for the daily precipitation totals over Athens, Greece. The data used are daily precipitation totals recorded at the National Observatory o...

متن کامل

Modeling pairwise dependencies in precipitation intensities

In statistics, extreme events are classically defined as maxima over a block length (e.g. annual maxima of daily precipitation) or as exceedances above a given large threshold. These definitions allow the hydrologist and the flood planner to apply the univariate Extreme Value Theory (EVT) to their time series of interest. But these strategies have two main drawbacks. Firstly, working with maxim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017