In-vitro Study of Photothermal Anticancer Activity of Carboxylated Multiwalled Carbon Nanotubes

نویسندگان

  • M.H. Bahreyni-Toosi
  • M.H. Zare
  • A. Ale-Davood
  • M.T. Shakeri
  • S. Soudmand
چکیده

Background and Objective Multi-walled Carbon Nano Tubes (MWCNTs) as an important element of nanosciences have a remarkable absorption in the region of NIR window (650-900 nm) which can overcome the limitations of deep treatment in photothermal therapy. To disperse MWCNTs in water, it is proposed to attach carboxylated functional group (-COOH) to MWCNTs in order to increase dispersivity in water. Materials and Methods A stable suspension of MWCNTs-COOH with different concentrations (from 2.5 to 500 μg/ml) was prepared. Then, they were compared for their ability to increase temperature in the presence of 810 nm laser irradiation and through a wide range of radiation time (from 20 to 600 s) and three laser powers (1.5, 2 and 2.5 w). The temperature rise was recorded real time every 20 seconds by a precise thermometer. Results Absorption spectrum of MWCNTs-COOH suspension was remarkably higher than water in a wavelength range of 200 to 1100 nm. For example, using the concentrations of 2.5 and 80 μg/ml of MWCNTs-COOH suspension caused a temperature elevation 2.35 and 9.23 times compared to water, respectively, upon 10 min laser irradiation and 2.5 w. Moreover, this predominance can be observed for 1.5 and 2 w radiation powers, too. Our findings show that the maximum of temperature increase was obtained at 80 μg/ml concentration of MWCNT-COOH suspension for three powers and through all periods of exposure time. Our results show that the minimum required parameters for a 5°C temperature increase (a 5°C temperature increase causes cell death) were achieved through 2.5 w, 28 μg/ml concentration and 20 second irradiation time in which both concentration and radiation times were relatively low. Conclusion Our results showed that MWCNTs-COOH can be considered as a potent photothermal agent in targeted therapies. New strategies must be developed to minimize the concentration, irradiation time and radiation power used in experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-vitro Study of Photothermal Anticancer Activity of Carboxylated Multiwalled Carbon Nanotubes

Background and Objective: Multi-walled Carbon Nano Tubes (MWCNTs) as an important element of nanosciences have a remarkable absorption in the region of NIR window (650-900 nm) which can overcome the limitations of deep treatment in photothermal therapy. To disperse MWCNTs in water, it is proposed to attach carboxylated functional group (-COOH) to MWCNTs in order to increase dispersivity in wate...

متن کامل

Preparation and Characterization of Multiwalled Carbon Nanotubes-Polythiophene Nanocomposites and its Gas Sensitivity Study at Room Temperature

The nanocomposites of polythiophene and carboxylated multiwalled carbon nanotubes (MWCNTs) were synthesized by in-situ chemical oxidative polymerization method using anhydrous ferric chloride (FeCl3) as an oxidant. The MWCNTs functionalized and ultrasonicated to obtain uniform dispersion within the polythiophene matrix. Field emission scanning electron microscopy was used to characterize the mo...

متن کامل

Functionalization of Multi-Walled Carbon Nanotubes by 1-Amino-2-Naphthol-4-Sulfonic Acid and Study of Their Antimicrobial Activity Against The Gram-negative and Gram-positive Bacterias

In this study, we investigated the chemical functionalization of carboxylated multiwalled carbon nanotubes (MWCNT–COOH) by 1-Amino-2-naphthol-4-sulfonic acid (ANSA). The functionalized MWCNTs exhibited good aqueous solubility due to the presence of the –OH and – SO3H groups of ANSA. The antimicrobial activity of the MWCNT–COOH as well as its functionalized multiwall nanotube MWCNT-CO-2-(1-amino...

متن کامل

Functionalization of multi-wall carbon nanotubes with Metformin derivatives and study of their antibacterial activities against E-Coli and S. aureus

Bacteria can grow in different materials that are in close contact with humans, foods, etc., so, it is very important to control this matter in order to prevent risk of infections. Antimicrobial resistance (AMR) threatens the effective prevention and treatment of an ever-increasing range of infections caused by bacteria, parasites, viruses and fungi. Multiwall carbon nanotubes (MWNTs) have inte...

متن کامل

Photochemical transformation of carboxylated multiwalled carbon nanotubes: role of reactive oxygen species.

The study investigated the photochemical transformation of carboxylated multiwalled carbon nanotubes (COOH-MWCNTs), an important environmental process affecting their physicochemical characteristics and hence fate and transport. UVA irradiation removed carboxyl groups from COOH-MWCNT surface while creating other oxygen-containing functional groups with an overall decrease in total surface oxyge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017