Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode
نویسندگان
چکیده
Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation.
منابع مشابه
Interfacing peripheral nerve with macro-sieve electrodes following spinal cord injury
Macro-sieve electrodes were implanted in the sciatic nerve of five adult male Lewis rats following spinal cord injury to assess the ability of the macro-sieve electrode to interface regenerated peripheral nerve fibers post-spinal cord injury. Each spinal cord injury was performed via right lateral hemisection of the cord at the T9-10 site. Five months post-implantation, the ability of the macro...
متن کاملSieve Electrodes for Neural Implants
An in vitro model was developed to characterise the electrical properties of silicon microfabricated recording electrodes, using a Cu-wire mimicing a neural signal source. Phosphorous doped electrodes were used to achieve an all silicon device. The model was used to study signal amplitude as a function of distance between the electrode surface and the signal source. Signal crosstalk to neighbou...
متن کاملFunctional regeneration of glossopharyngeal nerve through micromachined sieve electrode arrays.
To assess the potential of micromachined silicon sieve electrodes for long term recordings from single afferent sensory fibers, we implanted them between the cut ends of rat glossopharyngeal nerves which innervate taste and somatosensory receptors on the posterior tongue. After the implants had been in place for an average of 101 days nerve regeneration was measured using histological and elect...
متن کاملChronic recording of regenerating VIIIth nerve axons with a sieve electrode.
A micromachined silicon substrate sieve electrode was implanted within transected toadfish (Opsanus tau) otolith nerves. High fidelity, single unit neural activity was recorded from seven alert and unrestrained fish 30 to 60 days after implantation. Fibrous coatings of genetically engineered bioactive protein polymers and nerve guide tubes increased the number of axons regenerating through the ...
متن کاملProstaglandin E1 Combined with Chitosan Conduit Improves Sciatic Nerve Regeneration in Rats
Objective- To studylocal effect of prostaglandin E1on sciatic nerve regeneration Design- Experimental study Animals- Sixty male healthy white Wistar rats Procedures- Sixty animals were divided into four experimental groups (n = 15), randomly: Trasnsected (TC), Sham-operation (SHAM), control (CHIT) and prostagl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016