Structural and proteomic analyses reveal regional brain differences during honeybee aging.
نویسندگان
چکیده
Among insects, learning is particularly well studied in the fruit fly Drosophila melanogaster and the honeybee Apis mellifera. A senescence-dependent decline in classic pavlovian conditioning is demonstrated for both species. To understand how aging affects learning, genetic approaches used with Drosophila can benefit from complementary studies in Apis. Specifically, honeybees have a larger brain size allowing for compartment-specific approaches, and a unique life-history plasticity. They usually perform within-nest tasks early in life (nest bees) and later they collect food (foragers). Senescence of learning performance is a function of the bees' foraging duration but underlying causes are poorly understood. As cognitive aging is commonly associated with structural and biochemical changes in the brain, we hypothesized that brain areas implicated in learning change in synaptic and biochemical composition with increased foraging duration. First, we used synapse-specific immunohistochemistry and proteomics to screen for alterations in the calyx region of the mushroom body, a key structure for memory formation. Using proteomics, we next profiled the central brain, which comprises all higher-order integration centers. We show that, with increased foraging duration, levels of kinases, synaptic- and neuronal growth-related proteins decline in the central brain while the calyx region remains intact both in structure and biochemistry. We suggest that proteome-level changes within major anatomical sites of memory formation other than the calyx region could be central to learning dysfunction. These include large compartments of the central brain, such as the mushroom body's output regions and the antennal lobes. Our data provide novel information toward heterogeneity in the aging insect brain, and demonstrate advantages of the honeybee for invertebrate neurogerontological research.
منابع مشابه
Data for mitochondrial proteomic alterations in the aging mouse brain
Mitochondria are dynamic organelles critical for many cellular processes, including energy generation. Thus, mitochondrial dysfunction likely plays a role in the observed alterations in brain glucose metabolism during aging. Despite implications of mitochondrial alterations during brain aging, comprehensive quantitative proteomic studies remain limited. Therefore, to characterize the global age...
متن کاملGIT2 Acts as a Potential Keystone Protein in Functional Hypothalamic Networks Associated with Age-Related Phenotypic Changes in Rats
The aging process affects every tissue in the body and represents one of the most complicated and highly integrated inevitable physiological entities. The maintenance of good health during the aging process likely relies upon the coherent regulation of hormonal and neuronal communication between the central nervous system and the periphery. Evidence has demonstrated that the optimal regulation ...
متن کاملProteomic profiling of mitochondria: what does it tell us about the ageing brain?
Mitochondrial dysfunction is evident in numerous neurodegenerative and age-related disorders. It has also been linked to cellular ageing, however our current understanding of the mitochondrial changes that occur are unclear. Functional studies have made some progress reporting reduced respiration, dynamic structural modifications and loss of membrane potential, though there are conflicts within...
متن کاملAge-Related Differences in the Modulation of Small-World Brain Networks during a Go/NoGo Task
Although inter-regional phase synchrony of neural oscillations has been proposed as a plausible mechanism for response control, little is known about the possible effects due to normal aging. We recorded multi-channel electroencephalography (EEG) from healthy younger and older adults in a Go/NoGo task, and examined the aging effects on synchronous brain networks with graph theoretical analysis....
متن کاملBrain Structural Covariance Network in Asperger Syndrome Differs From Those in Autism Spectrum Disorder and Healthy Controls
Introduction: Autism is a heterogeneous neurodevelopmental disorder associated with social, cognitive and behavioral impairments. These impairments are often reported along with alteration of the brain structure such as abnormal changes in the grey matter (GM) density. However, it is not yet clear whether these changes could be used to differentiate various subtypes of autism spectrum disorder ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 212 Pt 24 شماره
صفحات -
تاریخ انتشار 2009