Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products.

نویسندگان

  • Laura Anne Lowery
  • Hazel Sive
چکیده

The mechanisms by which the vertebrate brain develops its characteristic three-dimensional structure are poorly understood. The brain ventricles are a highly conserved system of cavities that form very early during brain morphogenesis and that are required for normal brain function. We have initiated a study of zebrafish brain ventricle development and show here that the neural tube expands into primary forebrain, midbrain and hindbrain ventricles rapidly, over a 4-hour window during mid-somitogenesis. Circulation is not required for initial ventricle formation, only for later expansion. Cell division rates in the neural tube surrounding the ventricles are higher than between ventricles and, consistently, cell division is required for normal ventricle development. Two zebrafish mutants that do not develop brain ventricles are snakehead and nagie oko. We show that snakehead is allelic to small heart, which has a mutation in the Na+K+ ATPase gene atp1a1a.1. The snakehead neural tube undergoes normal ventricle morphogenesis; however, the ventricles do not inflate, probably owing to impaired ion transport. By contrast, mutants in nagie oko, which was previously shown to encode a MAGUK family protein, fail to undergo ventricle morphogenesis. This correlates with an abnormal brain neuroepithelium, with no clear midline and disrupted junctional protein expression. This study defines three steps that are required for brain ventricle development and that occur independently of circulation: (1) morphogenesis of the neural tube, requiring nok function; (2) lumen inflation requiring atp1a1a.1 function; and (3) localized cell proliferation. We suggest that mechanisms of brain ventricle development are conserved throughout the vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergent polarization mechanisms during vertebrate epithelial development mediated by the Crumbs complex protein Nagie oko.

The zebrafish MAGUK protein Nagie oko is a member of the evolutionarily conserved Crumbs protein complex and functions as a scaffolding protein involved in the stabilization of multi-protein assemblies at the tight junction. During zebrafish embryogenesis, mutations in nagie oko cause defects in both epithelial polarity and cardiac morphogenesis. We used deletion constructs of Nagie oko in func...

متن کامل

Heart and soul/PRKCi and nagie oko/Mpp5 regulate myocardial coherence and remodeling during cardiac morphogenesis.

Organ morphogenesis requires cellular shape changes and tissue rearrangements that occur in a precisely timed manner. Here, we show that zebrafish heart and soul (Has)/protein kinase C iota (PRKCi) is required tissue-autonomously within the myocardium for normal heart morphogenesis and that this function depends on its catalytic activity. In addition, we demonstrate that nagie oko (Nok) is the ...

متن کامل

Combined haploid and insertional mutation screen in the zebrafish.

To identify genes required for development of the brain and somites, we performed a pilot screen of gynogenetic haploid zebrafish embryos produced from mothers mutagenized by viral insertion. We describe an efficient method to identify new mutations and the affected gene. In addition, we report the results of a small-scale screen that identified five genes required for brain development, includ...

متن کامل

Mutations in N-cadherin and a Stardust homolog, Nagie oko, affect cell-cycle exit in zebrafish retina

It has been reported that the loss of apicobasal cell polarity and the disruption of adherens junctions induce hyperplasia in the mouse developing brain. However, it is not fully understood whether hyperplasia is caused by an enhanced cell proliferation, an inhibited neurogenesis, or both. In this study, we found that the ratio of the number of proliferating progenitor cells to the total number...

متن کامل

Fluorescently tagged Lin7c is a dynamic marker for polarity maturation in the zebrafish retinal epithelium

Development of epithelial cell polarity is a highly dynamic process, and often established by the sequential recruitment of conserved protein complexes, such as the Par or the Crumbs (Crb) complex. However, detailed insights into the refinement of polarity and the formation of the complexes are still lacking. Here, we established fluorescently tagged Lin7c, a core member of the Crb complex, as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 132 9  شماره 

صفحات  -

تاریخ انتشار 2005