GröBner-Shirshov Bases and Embeddings of Algebras
نویسندگان
چکیده
In this paper, by using Gröbner-Shirshov bases, we show that in the following classes, each (resp. countably generated) algebra can be embedded into a simple (resp. two-generated) algebra: associative differential algebras, associative Ω-algebras, associative λ-differential algebras. We show that in the following classes, each countably generated algebra over a countable field k can be embedded into a simple two-generated algebra: associative algebras, semigroups, Lie algebras, associative differential algebras, associative Ω-algebras, associative λ-differential algebras. Also we prove that any countably generated module over a free associative algebra k〈X〉 can be embedded into a cyclic k〈X〉-module, where |X| > 1. We give another proofs of the well known theorems: each countably generated group (resp. associative algebra, semigroup, Lie algebra) can be embedded into a two-generated group (resp. associative algebra, semigroup, Lie algebra).
منابع مشابه
Gröbner–Shirshov Bases for Irreducible sln+1-Modules
In [10], inspired by an idea of Gröbner, Buchberger discovered an effective algorithm for solving the reduction problem for commutative algebras, which is now called the Gröbner Basis Theory. It was generalized to associative algebras through Bergman’s Diamond Lemma [2], and the parallel theory for Lie algebras was developed by Shirshov [21]. The key ingredient of Shirshov’s theory is the Compo...
متن کاملar X iv : 1 50 2 . 06 47 2 v 1 [ m at h . R A ] 8 N ov 2 01 4 Gröbner - Shirshov bases and PBW theorems ∗
We review some applications of Gröbner-Shirshov bases, including PBW theorems, linear bases of free universal algebras, normal forms for groups and semigroups, extensions of groups and algebras, embedding of algebras.
متن کاملGröbner-Shirshov Bases for Lie Algebras: after A. I. Shirshov
In this paper, we review Shirshov’s method for free Lie algebras invented by him in 1962 [17] which is now called the Gröbner-Shirshov bases theory.
متن کاملRelative Gröbner–shirshov Bases for Algebras and Groups
The notion of a relative Gröbner–Shirshov basis for algebras and groups is introduced. The relative composition lemma and relative (composition-)diamond lemma are established. In particular, it is shown that the relative normal forms of certain groups arising from Malcev’s embedding problem are the irreducible normal forms of these groups with respect to their relative Gröbner–Shirshov bases. O...
متن کاملGröbner-Shirshov Bases for Lie Superalgebras and Their Universal Enveloping Algebras
We show that a set of monic polynomials in the free Lie superalgebra is a Gröbner-Shirshov basis for a Lie superalgebra if and only if it is a Gröbner-Shirshov basis for its universal enveloping algebra. We investigate the structure of GröbnerShirshov bases for Kac-Moody superalgebras and give explicit constructions of Gröbner-Shirshov bases for classical Lie superalgebras. Supported in part by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 20 شماره
صفحات -
تاریخ انتشار 2010