Artificial duplication of the R67 dihydrofolate reductase gene to create protein asymmetry. Effects on protein activity and folding.

نویسندگان

  • P Zhuang
  • M Yin
  • J C Holland
  • C B Peterson
  • E E Howell
چکیده

R67 dihydrofolate reductase (DHFR), encoded by an R plasmid, provides resistance to the antibacterial drug trimethoprim. This enzyme does not exhibit any structural or sequence homologies with chromosomal DHFR. A recent crystal structure of tetrameric R67 DHFR (D. Matthews, X. Nguyen-huu, and N. Narayana, personal communication) shows a single pore traversing the length of the molecule. Numerous physical and kinetic experiments suggest the pore is the active site. Since the center of the pore possesses exact 222 symmetry, mutagenesis of residues designed to explore substrate binding will probably also affect cofactor binding. As a first step in breaking this inevitable symmetry in R67 DHFR, the gene has been duplicated. The protein product, R67 DHFRdouble, is twice the molecular mass of native R67 DHFR and is fully active with kcat = 1.2 s-1, Km(NADPH) = 2.7 microM and Km(dihydrofolate) = 6.3 microM. Equilibrium unfolding studies in guanidine-HCl indicate R67 DHFRdouble is more stable than native R67 DHFR at physically reasonable protein concentrations. Microcalorimetry studies show native R67 DHFR undergoes fully reversible thermal unfolding. Unfolding can be described by a two-state process since a ratio of delta Hcalorimetric to delta Hvan't Hoff equals 0.96. In contrast, thermal unfolding of R67 DHFRdouble is not fully reversible and possesses an oligomerization component introduced by the gene duplication event.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein expression in Escherichia coli minicells containing recombinant plasmids specifying trimethoprim-resistant dihydrofolate reductases.

Deoxyribonucleic acid fragments containing the structural genes for several trimethoprim-resistant dihydrofolate reductases from naturally occurring plasmids were inserted into small cloning vehicles. The genetic expression of these hybrid plasmids was studied in purified Escherichia coli minicells. The type I dihydrofolate reductase, encoded by plasmid R483 and residing within transposon 7 (Tn...

متن کامل

A balancing act between net uptake of water during dihydrofolate binding and net release of water upon NADPH binding in R67 dihydrofolate reductase.

R67 dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. This enzyme is a homotetramer possessing 222 symmetry, and a single active site pore traverses the length of the protein. A promiscuous binding surface can accommodate either DHF or NADPH, thus two nonproductive complexes can form (2NADPH or 2DHF) as well as a product...

متن کامل

Getting Heavy: An Exploration into the Effects of D2O and High Hydrostatic Pressure on R67 Dihydrofolate Reductase

Chromosomal dihydrofolate reductase (DHFR) enzymatically reduces dihydrofolate (DHF) to tetrahydrofolate (THF) using NADPH as a cofactor. R67 DHFR is an R-plasmid encoded enzyme that confers resistance to trimethoprim (TMP), an antibacterial drug. It shares no structural homology with TMP targeted, chromosomal DHFRs. Previous osmolyte studies in our lab have indicated that DHF binding to R67 DH...

متن کامل

The amino acid sequence of the trimethoprim-resistant dihydrofolate reductase specified in Escherichia coli by R-plasmid R67.

The amino acid sequence of a trimethoprim-resistant dihydrofolate reductase (EC 1.5.1.3) specified by the R-plasmid R67 is described. The sequence was deduced from automatic and manual sequence analysis of the intact protein, the fragments produced by cyanogen bromide cleavage, and peptides derived from the largest cyanogen bromide fragment by digestion with trypsin, Staphylococcus aureus V8 pr...

متن کامل

P-30: The Effect of The T26248G Polymorphism on Putative MethyltransferaseNsun7 Protein Function and Its Role in Male Infertility

Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 268 30  شماره 

صفحات  -

تاریخ انتشار 1993