Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions
نویسندگان
چکیده
In the present work, we report measurements of the effective thermal conductivity of dispersions of single-walled carbon nanotube (SWNT) suspensions in ethylene glycol. The SWNTs were synthesized using the alcohol catalytic chemical vapour deposition method. Resonant Raman spectroscopy was employed to estimate the diameter distribution of the SWNTs based on the frequencies of the radial breathing mode peaks. The nanofluid was prepared by dispersing the nanotubes using a bile salt as the surfactant. Nanotube loading of up to 0.3 wt% was used. Thermal conductivity measurements were performed by the transient hot-wire technique. Good agreement, within an uncertainty of 2%, was found for published thermal conductivities of the pure fluids. The enhancement of thermal conductivity was found to increase with respect to nanotube loading. The maximum enhancement in thermal conductivity was found to be 14.8% at 0.3 wt% loading. The experimental results were compared with literature results in similar dispersion medium. Experimental results were compared with the Hamilton-Crosser model, the Lu-Lin model, Nan‘s effective medium theory and the Hashin-Strikman model. Effective medium theory seems to predict the thermal conductivity enhancement reasonably well compared to rest of the models. Networking of nanotubes to form a tri-dimensional structure was considered to be the reason for the thermal conductivity enhancement.
منابع مشابه
Hybrid nanofluid based on CuO nanoparticles and single-walled Carbon nanotubes: Optimization, thermal, and electrical properties
The purpose of this study is to use the thermal and electrical conductivities of copper oxide nanoparticles and carbon nanotubes for the preparation of high-performance nanofluids for achieving better heat transfer properties. These nanofluids consist of a water/Ethylene Glycol solution containing single-wall carbon nanotubes (SWCNTs) and copper oxide nanoparticles (CuONPs). The effects of such...
متن کاملAnomalous thermal conduction characteristics of phase change composites with single walled carbon nanotube inclusions
walled carbon nanotube inclusions Sivasankaran Harish, Kei Ishikawa, Shohei Chiashi, Junichiro Shiomi, Shigeo Maruyama Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. We report large contrasts in the thermal conductivity enhancement of phase change alkanes in liquid and solid state with single walled carbon nanotube (SWCNT) inclusion...
متن کاملOn the Thermal Conductivity of Carbon Nanotube/Polypropylene Nanocomposites by Finite Element Method
In this paper, finite element method is used to obtain thermal conductivity coefficients of single-walled carbon nanotube reinforced polypropylene. For this purpose, the two-dimensional representative volume elements are modeled. The effect of different parameters such as nanotube dispersion pattern, nanotube volume percentage in polymer matrix, interphase thickness between nanotube and surroun...
متن کاملDevelopment of Single Walled Carbon Nanotube-Molybdenum Disulfide Nanocomposite/poly-ethylene Glycol Modified Carbon Paste Electrode as an Electrochemical Sensor for the Investigation of Sulfadiazine in Biological Samples
A rapid electrochemical analysis of sulfadiazine (SFZ) has been carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods by employing a sensitive single walled carbon nanotube-molybdenum disulfide nanocomposite/poly ethylene glycol modified carbon paste electrode (SWCNT-MoS2/PEG/CPE). The SFZ shows anodic peak potential at 0.94 V (vs. Ag/AgCl) in 0.1 M PBS of pH 7...
متن کاملEnhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system
In this study, enhancements of thermal conductivities of ethylene glycol, water, and synthetic engine oil in the presence of copper (Cu), copper oxide (CuO), and multi-walled carbon nanotube (MWNT) are investigated using both physical mixing method (two-step method) and chemical reduction method (one-step method). The chemical reduction method is, however, used only for nanofluid containing Cu ...
متن کامل