Molecular Computing Solutions of some Classical Problems
نویسنده
چکیده
In this paper we give efficient molecular computing solutions to seven well-known NP-complete problems, namely the Hamiltonian circuit, Path with forbidden pairs, Longest path, Monochromatic triangle, Partition into triangles, Partition into paths of length two, Circuit satisfiability problems in the Parallel filtering model of Amos et al.
منابع مشابه
Parallelizing Assignment Problem with DNA Strands
Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...
متن کاملExistence of multiple solutions for Sturm-Liouville boundary value problems
In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.
متن کاملSolutions of some Classical Problems in Various Theoretical DNA Computing Models
In this work we give efficient molecular computing solutions to eight well-known NP-complete problems, namely the Hamiltonian circuit, Longest path, Longest circuit, Path with forbidden pairs, Monochromatic triangle, Partition into triangles, Partition into paths of length two and Circuit satisfiability problems in the Parallel filtering model of Amos et al. We also show that this model can be ...
متن کاملThe Structural Relationship Between Topological Indices and Some Thermodynamic Properties
The fact that the properties of a molecule are tightly connected to its structural characteristics is one of the fundamental concepts in chemistry. In this connection, graph theory has been successfully applied in developing some relationships between topological indices and some thermodynamic properties. So , a novel method for computing the new descriptors to construct a quantitative rela...
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کامل