AutoMode: Relational Learning With Less Black Magic
نویسندگان
چکیده
Relational databases are valuable resources for learning novel and interesting relations and concepts. Relational learning algorithms learn the Datalog definition of new relations in terms of the existing relations in the database. In order to constraint the search through the large space of candidate definitions, users must tune the algorithm by specifying a language bias. Unfortunately, specifying the language bias is done via trial and error and is guided by the expert’s intuitions. Hence, it normally takes a great deal of time and effort to effectively use these algorithms. In particular, it is hard to find a user that knows computer science concepts, such as database schema, and has a reasonable intuition about the target relation in special domains, such as biology. We propose AutoMode, a system that leverages information in the schema and content of the database to automatically induce the language bias used by popular relational learning systems. We show that AutoMode delivers the same accuracy as using manually-written language bias by imposing only a slight overhead on the running time of the learning algorithm.
منابع مشابه
Black Box Methods – Neural Networks and Support Vector Machines
The late science fiction author Arthur C. Clarke once wrote that "any sufficiently advanced technology is indistinguishable from magic." This chapter covers a pair of machine learning methods that may, likewise, appear at first glance to be magic. As two of the most powerful machine learning algorithms, they are applied to tasks across many domains. However, their inner workings can be difficul...
متن کاملExpression of Genes Encoding Protein Kinases During Flower Opening in Two Cut Rose Cultivars with Different Longevity
Ethylene plays an important role in wide-ranging aspects of plant growth and development, includingfruit ripening, leaf and flower senescence. In this study, the expression patterns of two genes involved in theethylene signal transduction pathway (RhCTR1 and RhCTR2) were investigated during the flower openingstages in two Rosa hybrida cultivars, ‘Black magic’ and ‘Maroussia’, ...
متن کاملAn Experiment in Automatic Design of Robot Swarms - AutoMoDe-Vanilla, EvoStick, and Human Experts
We present an experiment in automatic design of robot swarms. For the first time in the swarm robotics literature, we perform an objective comparison of multiple design methods: we compare swarms designed by two automatic methods—AutoMoDe-Vanilla and EvoStick— with swarms manually designed by human experts. AutoMoDe-Vanilla and EvoStick have been previously published and tested on two tasks. To...
متن کاملتأثیر تغذیه فسفری از منابع مختلف آپاتیتهای ایران در دوره های طولانی کشت بر ویژگیهای غنچه گل رُز (Rosa L. hybrids var. Black magic) در کشت زئوپونیک
عنصر فسفر پدیده تشکیل گل را در گیاه تحریک کرده و به تشکیل دانه کمک میکند، اما فاصلهای زیاد بین میزان فسفر قابل تأمین از منابع طبیعی و تقاضای بخش صنعت و کشاورزی وجود دارد. به منظور ارزیابی اثر تغذیه فسفری طی زمان از آپاتیتهای مناطق ایران بر خصوصیات گل رُز رقم بلک مجیک (Black magic) در کشت زئوپونیک، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً تصادفی با 3 تکرار صورت گرفت. اثر 8 نوع بستر کشت با در...
متن کامل4.4 Emst Application on One Qgm Box Output: Query Graph G 0 after Applying Emst Rule to Box Example 4.9 Continuing with Example 4.7: a Copy Example 4.11 Continuing with Example 4.9: Sin- Example 4.13 Continuing with Example 4.11
The integration of EMST into the complete query-rewrite rule system enables us to eliminate the unnecessary complexity introduced by EMST in the query graph. EMST uses bcf adornments, can push equality and condition predicates, can push local and join predicates , adorns and transforms queries in one phase, can handle correlations, and is extensible. We have developed a cost-based heuristic to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.01420 شماره
صفحات -
تاریخ انتشار 2017