The roles of Tyr(91) and Lys(162) in general acid-base catalysis in the pigeon NADP+-dependent malic enzyme.

نویسندگان

  • Cheng-Chin Kuo
  • Kuan-Yu Lin
  • Yau-Jung Hsu
  • Shu-Yu Lin
  • Yu-Tsen Lin
  • Gu-Gang Chang
  • Wei-Yuan Chou
چکیده

The role of general acid-base catalysis in the enzymatic mechanism of NADP+-dependent malic enzyme was examined by detailed steady-state kinetic studies through site-directed mutagenesis of the Tyr(91) and Lys(162) residues in the putative catalytic site of the enzyme. Y91F and K162A mutants showed approx. 200- and 27000-fold decreases in k(cat) values respectively, which could be partially recovered with ammonium chloride. Neither mutant had an effect on the partial dehydrogenase activity of the enzyme. However, both Y91F and K162A mutants caused decreases in the k(cat) values of the partial decarboxylase activity of the enzyme by approx. 14- and 3250-fold respectively. The pH-log(k(cat)) profile of K162A was found to be different from the bell-shaped profile pattern of wild-type enzyme as it lacked a basic pK(a) value. Oxaloacetate, in the presence of NADPH, can be converted by malic enzyme into L-malate by reduction and into enolpyruvate by decarboxylation activities. Compared with wild-type, the K162A mutant preferred oxaloacetate reduction to decarboxylation. These results are consistent with the function of Lys(162) as a general acid that protonates the C-3 of enolpyruvate to form pyruvate. The Tyr(91) residue could form a hydrogen bond with Lys(162) to act as a catalytic dyad that contributes a proton to complete the enol-keto tautomerization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basic residues play key roles in catalysis and NADP(+)-specificity in maize (Zea mays L.) photosynthetic NADP(+)-dependent malic enzyme.

C(4)-specific (photosynthetic) NADP(+)-dependent malic enzyme (NADP(+)-ME) has evolved from C(3)-malic enzymes and represents a unique and specialized form, as indicated by its particular kinetic and regulatory properties. In the present paper, we have characterized maize (Zea mays L.) photosynthetic NADP(+)-ME mutants in which conserved basic residues (lysine and arginine) were changed by site...

متن کامل

Structural studies of the pigeon cytosolic NADP(+)-dependent malic enzyme.

Malic enzymes are widely distributed in nature, and have important biological functions. They catalyze the oxidative decarboxylation of malate to produce pyruvate and CO(2) in the presence of divalent cations (Mg(2+), Mn(2+)). Most malic enzymes have a clear selectivity for the dinucleotide cofactor, being able to use either NAD(+) or NADP(+), but not both. Structural studies of the human mitoc...

متن کامل

Determinants of Nucleotide-Binding Selectivity of Malic Enzyme

Malic enzymes have high cofactor selectivity. An isoform-specific distribution of residues 314, 346, 347 and 362 implies that they may play key roles in determining the cofactor specificity. Currently, Glu314, Ser346, Lys347 and Lys362 in human c-NADP-ME were changed to the corresponding residues of human m-NAD(P)-ME (Glu, Lys, Tyr and Gln, respectively) or Ascaris suum m-NAD-ME (Ala, Ile, Asp ...

متن کامل

Functional roles of the N-terminal amino acid residues in the Mn(II)-L-malate binding and subunit interactions of pigeon liver malic enzyme.

Pigeon liver malic enzyme has an N-terminal amino acid sequence of Met-Lys-Lys-Gly-Tyr-Glu-. In this work, various mutants of the enzyme with individual or combinational deletion (delta) or substitution at these amino acids were constructed and functionally expressed in Escherichia coli cells. A major protein band corresponding to an Mr of approximately 65000 was observed for all recombinant en...

متن کامل

Conformational stability of the N-terminal amino acid residues of mutated recombinant pigeon liver malic enzymes.

Pigeon liver malic enzyme has an N-terminal amino acid sequence of Met-Lys-Lys-Gly-Tyr-Glu-Val-Leu-Arg-. Our previous results indicated that the N-terminus of the enzyme is located at or near the enzyme's active center involved in Mn(II)-L-malate binding and is also near to the subunits' interface. In the present study, the conformational stability of the various deletion (delta) and substituti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 411 3  شماره 

صفحات  -

تاریخ انتشار 2008