Estimation-Based Local Search for Stochastic Combinatorial Optimization Using Delta Evaluations: A Case Study on the Probabilistic Traveling Salesman Problem

نویسندگان

  • Mauro Birattari
  • Prasanna Balaprakash
  • Thomas Stützle
  • Marco Dorigo
چکیده

I recent years, much attention has been devoted to the development of metaheuristics and local search algorithms for tackling stochastic combinatorial optimization problems. This paper focuses on local search algorithms; their effectiveness is greatly determined by the evaluation procedure that is used to select the best of several solutions in the presence of uncertainty. In this paper, we propose an effective evaluation procedure that makes use of empirical estimation techniques. We illustrate this approach and we assess its performance on the probabilistic traveling salesman problem. Experimental results on a large set of instances show that the proposed approach can lead to a very fast and highly effective local search algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation-based Local Search for the Probabilistic Traveling Salesman Problem

In this paper, we propose an effective local search algorithm that makes use of empirical estimation techniques for a class of stochastic combinatorial optimization problems. We illustrate our approach and assess its performance on the probabilistic traveling salesman problem. Experimental results on a large set of instances show that our approach is very competitive.

متن کامل

Discrete Optimization Adaptive sample size and importance sampling in estimation-based local search for the probabilistic traveling salesman problem

The probabilistic traveling salesman problem is a paradigmatic example of a stochastic combinatorial optimization problem. For this problem, recently an estimation-based local search algorithm using delta evaluation has been proposed. In this paper, we adopt two well-known variance reduction procedures in the estimation-based local search algorithm: the first is an adaptive sampling procedure t...

متن کامل

Adaptive Sample Size and Importance Sampling in Estimation-based Local Search for the Probabilistic Traveling Salesman Problem: A complete analysis

The probabilistic traveling salesman problem is a paradigmatic example of a stochastic combinatorial optimization problem. For this problem, recently an estimation-based local search algorithm using delta evaluation has been proposed. In this paper, we adopt two wellknown variance reduction procedures in the estimation-based local search algorithm: The first is an adaptive sampling procedure th...

متن کامل

Adaptive sample size and importance sampling in estimation-based local search for the probabilistic traveling salesman problem

The probabilistic traveling salesman problem is a paradigmatic example of a stochastic combinatorial optimization problem. For this problem, recently an estimation-based local search algorithm using delta evaluation has been proposed. In this paper, we adopt two well-known variance reduction procedures in the estimation-based local search algorithm: the first is an adaptive sampling procedure t...

متن کامل

Engineering Stochastic Local Search Algorithms: A Case Study in Estimation-Based Local Search for the Probabilistic Travelling Salesman Problem

In this article, we describe the steps that have been followed in the development of a high performing stochastic local search algorithm for the probabilistic travelling salesman problem, a paradigmatic combinatorial stochastic optimization problem. In fact, we have followed a bottom-up algorithm engineering process that starts from basic algorithms (here, iterative improvement) and adds comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2008