A Switching Linear Gaussian Hidden Mar to Nonstationary Noise Compensation Fo

نویسنده

  • Jian Wu
چکیده

The Switching Linear Gaussian (SLG) Models was proposed recently for time series data with nonlinear dynamics. In this paper, we present a new modelling approach, called SLGHMM, that uses a hybrid Dynamic Bayesian Network of SLG models and Continuous Density HMMs (CDHMMs) to compensate for the nonstationary distortion that may exist in speech utterance to be recognized. With this representation, the CDHMMs (each modelling mainly the linguistic information of a speech unit) and a set of linear Gaussian models (each modelling a kind of stationary distortion) can be jointly learnt from multi-condition training data. Such a SLGHMM is able to model approximately the distribution of speech corrupted by switching-condition distortions. The effectiveness of the proposed approach is confirmed in noisy speech recognition experiments on Aurora2 task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition of Noisy Speech: A Comparative Survey of Robust Model Architecture and Feature Enhancement

Performance of speech recognition systems strongly degrades in the presence of background noise, like the driving noise inside a car. In contrast to existing works, we aim to improve noise robustness focusing on all major levels of speech recognition: feature extraction, feature enhancement, speech modelling, and training. Thereby, we give an overview of promising auditory modelling concepts, s...

متن کامل

Virtues and Vices of Source Separation Using Linear Independent Component Analysis for Blind Source Separation of Non-linearly Coupled and Synchronised Fetal and Mother ECGs

In this paper, we address the imminent problem which arises when researchers unjudiciously use a linear and instantaneous (memoryless) model for the source mixing structures of independent component analysis (ICA), also known as blind source separation (BSS), in persuit of separating noisy and frequently nonstationary combined mother and fetal electrocardiogram (ECG) signals from cutaneous meas...

متن کامل

Hierarchical Classification Tree Modeling of Nonstationary Noise for Robust Speech Recognition

Noise robustness is a key issue in successful deployment of automatic speech recognition systems in demanding environments such as hospital operating rooms. Perhaps the most successful way to overcome the additive noise obstacle is to employ a model adaptation scheme built around a set of dedicated clean speech and noise-only statistical models. Existing recognizer designs generally rely on rel...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

Speech recognition and enhancement by a nonstationary AR HMM with gain adaptation under unknown noise

In this paper, a gain-adapted speech recognition in unknown noise is developed in time domain. The noise is assumed to be the colored noise. The nonstationary autoregressive (NAR) hidden markov model (HMM) used to model clean speeches, The nonstationary AR is modeled by polynomial functions with a linear combination of A4 known basis functions. Enhancement using multiple Kalman filters is perfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003