Conjugate Gradient Methods in Training Neural Networks
نویسندگان
چکیده
Training of artificial neural networks is normally a time consuming task due to iterative search imposed by the implicit nonlinearity of the network behavior. To tackle the supervised learning of multilayer feed forward neural networks, the backpropagation algorithm has been proven to be one of the most successful neural network algorithm. Although backpropagation training has proved to be efficient in many applications, its convergence tends to be very slow and it often yields suboptimal solutions. Standard backpropagation, as with many gradient based optimizaton methods converges slowly as neural networks problems become larger and more complex. This paper concentrates on conjugate gradient-based training methods originated from optimization theory, namely, Fletcher Reeves conjugate gradient, Polak-Ribierre conjugate gradient and Powell-Beale restart. The behavior of these training methods on several real life application problems is reported, thereby illuminating convergence and robustness. The real world problems which have been considered include Classification of Iris Plant, Gender Classification of Crabs and Classification of Face Images. By using these algorithms, the convergence rate can be improved immensely with only a minimal increase in the complexity. Numerical evidence shows that these methods do perform well. (ATCMA264)
منابع مشابه
A conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملon descent spectral cg algorithm for training recurrent neural networks
In this paper, we evaluate the performance of a new class of conjugate gradient methods for training recurrent neural networks which ensure the sufficient descent property. The presented methods preserve the advantages of classical conjugate gradient methods and simultaneously avoid the usually inefficient restarts. Simulation results are also presented using three different recurrent neural ne...
متن کاملConjugate gradient neural network in prediction of clay behavior and parameters sensitivities
The use of artificial neural networks has increased in many areas of engineering. In particular, this method has been applied to many geotechnical engineering problems and demonstrated some degree of success. A review of the literature reveals that it has been used successfully in modeling soil behavior, site characterization, earth retaining structures, settlement of structures, slope stabilit...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کامل