Reconnaissance et classification de lettrines à base des descripteurs de bas niveau et de représentation structurelle

نویسندگان

  • Maroua Mehri
  • Pierre Héroux
  • Mickaël Coustaty
  • Petra Gomez-Krämer
  • Julien Lerouge
  • Rémy Mullot
چکیده

This article tackles some important issues relating to the analysis of a particular case of complex ancient graphic images, called “lettrines”, “drop caps” or “ornamental letters”. Our contribution focuses on proposing generic solutions for lettrine recognition and classification. Firstly, we propose a bottom-up segmentation method, based on auto-correlation features, ensuring the separation of the letter from the elements of the background in an ornamental letter. Secondly, a structural representation is proposed for characterizing a lettrine. This structural representation is based on filtering automatically relevant information by extracting representative homogeneous regions from a lettrine to generate a graph-based signature. The proposed signature provides a rich and holistic description of the lettrine style by integrating varying low-level features (e.g. texture). Then, to categorize and classify lettrines with similar style, structure (i.e. ornamental background) and content (i.e. letter), a graph-matching paradigm has been carried out to compare and classify the resulting graph-based signatures. Finally, to demonstrate the robustness of the proposed solutions and provide additional insights into their accuracies, an experimental evaluation has been conducted using a relevant set of lettrine images. In addition, we compare the results achieved with those obtained using the state-of-the-art methods to illustrate the effectiveness of the proposed solutions. MOTS-CLÉS : Lettrine, reconnaissance, classification, indexation, texture, graphe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperfeatures - Multilevel Local Coding for Visual Recognition

Histograms of local appearance descriptors are a popular representation for visual recognition. They are highly discriminant and they have good resistance to local occlusions and to geometric and photometric variations, but they are not able to exploit spatial co-occurrence statistics of features at scales larger than their local input patches. We present a new multilevel visual representation,...

متن کامل

Local Features and Kernels for Classification of Texture and Object Categories: An In-Depth Study

Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations and learns a Support Vector Machine classifier with kernels based on two effective measures for com...

متن کامل

فایل کامل مجلّه مطالعات زبان فرانسه دو فصلنامه علمی پژوهشی زبان فرانسه دانشکده زبانهای خارجی دانشگاه اصفهان

Tâ ÇÉÅ wx W|xâ Revue des Études de la Langue Française Revue semestrielle de la Faculté des Langues Étrangères de l'Université d'Ispahan Cinquième année, N° 8 Printemps-Eté 2013, ISSN 2008- 6571 ISSN électronique 2322-469X Cette revue est indexée dans: Ulrichsweb: global serials directory http://ulrichsweb.serialssolutions.com Doaj: Directory of Open Access Journals http://www.doaj.org ...

متن کامل

Translation mismatches in lexically-driven FUDR-based MT Towards standardization of lexicon formalisms for MT

Nous proposons un formalisme lexical pour des architectures de transfert co-descriptives dirigées par le lexique qui définissent le niveau analytique des structures superficielles sous-specifiées de la représentation discursive (FUDRS) comme le niveau de transfert. Nous examinerons quelques exemples de non-concordance structurelle entre source et cible dont on sait que la représentation est ext...

متن کامل

Plongement incrémental dans un contexte de dissimilarité

RÉSUMÉ. Le domaine de la reconnaissance statistique de formes est basé sur la représentation numérique des objets et peut donc être facilement combiné avec des méthodes d’apprentissage automatique. D’autre part, la reconnaissance structurelle de formes utilise un ensemble limité de méthodes d’apprentissage automatique mais encode une riche description des objets via les chaînes de caractères ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016