Dislocation Structure and Mobility in Hcp Rare-Gas Solids: Quantum versus Classical
نویسندگان
چکیده
We study the structural and mobility properties of edge dislocations in rare-gas crystals with the hexagonal close-packed (hcp) structure by using classical simulation techniques. Our results are discussed in the light of recent experimental and theoretical studies on hcp 4He, an archetypal quantum crystal. According to our simulations classical hcp rare-gas crystals present a strong tendency towards dislocation dissociation into Shockley partials in the basal plane, similarly to what is observed in solid helium. This is due to the presence of a low-energy metastable stacking fault, of the order of 0.1 mJ/m2, that can get further reduced by quantum nuclear effects. We compute the minimum shear stress that induces glide of dislocations within the hcp basal plane at zero temperature, namely, the Peierls stress, and find a characteristic value of the order of 1 MPa. This threshold value is similar to the Peierls stress reported for metallic hcp solids (Zr and Cd) but orders of magnitude larger than the one estimated for solid helium. We find, however, that in contrast to classical hcp metals but in analogy to solid helium, glide of edge dislocations can be thermally activated at very low temperatures, T∼10 K, in the absence of any applied shear stress.
منابع مشابه
Dislocation mobility in a quantum crystal: the case of solid 4He.
We investigate the structure and mobility of dislocations in hcp 4He crystals. In addition to fully characterizing the five elastic constants of this system, we obtain direct insight into dislocation core structures on the basal plane, which demonstrates a tendency toward dissociation into partial dislocations. Moreover, our results suggest that intrinsic lattice resistance is an essential fact...
متن کاملPath integral Monte Carlo study of quantum-hard sphere solids.
A path integral study of the fcc, hcp, and bcc quantum hard-sphere solids is presented. Ranges of densities within the interval of reduced de Broglie wavelengths 0.2≤λB(*)≤0.8 have been analyzed using Monte Carlo simulations with Cao-Berne propagator. Energies, pressures, and structural quantities (pair radial correlation functions, centroid structure factors, and Steinhardt order parameters) h...
متن کاملAnomalous Diffusion and Quantum Interference Effect in Nano-scale Periodic Lorentz Gas
Recent advances in submicrometer technology have made it possible to confine the two-dimensional electron gas into high-mobility semiconductor heterostructures. Such structure with a lattice of electrondepleted circular obstacles are called quantum antidot lattices, or quantum Lorentz gas systems. By using the semiclassical scattering theory, we show that quantum interference in finite-size ope...
متن کاملفرمولبندی هندسی کوانتش تغییرشکل برزین
In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...
متن کاملTopological analysis and Quantum mechanical structure of Ozone
Topological analysis has been performed on the total electron density of the two forms of Ozonemolecule,C2V and D3H ,to investigate the nature of chemical bonds ,molecular structure , atomiccharges and electrical properties. While these concepts have been completely discussed usingclassical models the emphasize in this work is based on Quantum Theory of Atoms in Molecules(QTAIM). Because the D3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018