Water and energy budgets of hurricanes and implications for climate change
نویسندگان
چکیده
[1] On the basis of simulations of hurricane Katrina in August 2005 with the advanced Weather and Research Forecasting (WRF) model at 4 km resolution without parameterized convection, empirical relationships are computed between the maximum simulated wind and the surface fluxes and precipitation and provide a reasonable fit to the data. The best track data set of global observed tropical cyclones is used to estimate the frequency that storms of a given strength occur over the globe after 1970. For 1990–2005 the total surface heat loss by the tropical ocean in hurricanes category 1 to 5 within 400 km of the center of the storms is estimated to be about 0.53 10 J a 1 (where a is year) (0.17 PW). The enthalpy loss due to hurricanes computed on the basis of precipitation is about a factor of 3.4 greater (0.58 PW), owing to the addition of the surface fluxes from outside 400 km radius and moisture convergence into the storms typically from as far from the eye as 1600 km. Globally these values correspond to 0.33 W m 2 for evaporation, or 1.13 W m 2 for precipitation. Changes over time reflect basin differences and a prominent role for El Niño, and the most active period globally was 1989 to 1997. Strong positive trends from 1970 to 2005 occur in these inferred surface fluxes and precipitation arising from increases in intensity of storms and also higher sea surface temperatures. Confidence in this result is limited by uncertainties in the best track tropical cyclone data. Nonetheless, the results highlight the importance of surface energy exchanges in global energetics of the climate system and are suggestive of the deficiencies in climate models owing to their inadequate representation of hurricanes.
منابع مشابه
Investigation on Climate Change in Meteorological Stations of Guilan Province and its Impacts on Water Balance
Climate has always been changing during the lifetime of the earth, and has appeared in the form of the ice age, hurricanes, severe and sudden temperature changes, precipitation and other climatic elements, and has dramatically influenced the environment, and in some cases has caused severe changes and even destructions. Some of the most important aspects of climate changes can be found in preci...
متن کاملCombating Climate Change: The Role of Renewable Energy and Energy Efficiency
Climate change and its possible impacts on the environment and socio-economic systems now constitute the most important environmental problem facing mankind in the 21st century. Climate change will increase poverty and hardship, endanger food security, destabilize economies, decrease food and water and create social insecurity in many countries and undermine our goals for achieving sustainable ...
متن کاملThe food-energy-water nexus: A framework for sustainable development modeling
Energy, water, and food are facing present and future challenges triggered by climate change, population growth, human behavior, and economics. Management strategies for energy, water, and food are possible through policies, technology, and related education. However, the links between resources (energy, water, and food) and impacting factors (population increase, human behavior, economics, and...
متن کاملHydrologic responses of watershed assessment to land cover and climate change using soil and water assessment tool model
Predicting the impact of land cover and climate change on hydrologic responses using modeling tools are essential in understanding the movement and pattern of hydrologic processes within the watershed. The paper provided potential implications of land conversions and climate change scenarios on the hydrologic processes of Muleta watershed using soil and water assessment tool model. Model inputs...
متن کاملWater and energy budgets of hurricanes: Case studies of Ivan and Katrina
[1] To explore the role of hurricanes in the climate system, a detailed analysis is made of the bulk atmospheric moisture budget of Ivan in September 2004 and Katrina in August 2005 from simulations with the Weather and Research Forecasting (WRF) model at 4 km resolution without parameterized convection. Heavy precipitation exceeding 20 mm h 1 in the storms greatly exceeds the surface flux of m...
متن کامل