An Efficient Minibatch Acceptance Test for Metropolis-Hastings

نویسندگان

  • Daniel Seita
  • Xinlei Pan
  • Haoyu Chen
  • John F. Canny
چکیده

We present a novel Metropolis-Hastings method for large datasets that uses small expected-size minibatches of data. Previous work on reducing the cost of MetropolisHastings tests yield variable data consumed per sample, with only constant factor reductions versus using the full dataset for each sample. Here we present a method that can be tuned to provide arbitrarily small batch sizes, by adjusting either proposal step size or temperature. Our test uses the noise-tolerant Barker acceptance test with a novel additive correction variable. The resulting test has similar cost to a normal SGD update. Our experiments demonstrate several order-of-magnitude speedups over previous work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On directional Metropolis-Hastings algorithms

Metropolis–Hastings algorithms are used to simulate Markov chains with limiting distribution equal to a specified target distribution. The current paper studies target densities on R. In directional Metropolis–Hastings algorithms each iteration consists of three steps i) generate a line by sampling an auxiliary variable, ii) propose a new state along the line, and iii) accept/reject according t...

متن کامل

Methodology for inference on the Markov modulated Poisson process and theory for optimal scaling of the random walk Metropolis

Two distinct strands of research are developed: new methodology for inference on the Markov modulated Poisson process (MMPP), and new theory on optimal scaling for the random walk Metropolis (RWM). A novel technique is presented for simulating from the exact distribution of a continuous time Markov chain over an interval given the start and end states and the infinitesimal generator. This is us...

متن کامل

Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach

Prefetching is a simple and general method for single-chain parallelisation of the Metropolis-Hastings algorithm based on the idea of evaluating the posterior in parallel and ahead of time. Improved Metropolis-Hastings prefetching algorithms are presented and evaluated. It is shown how to use available information to make better predictions of the future states of the chain and increase the e¢ ...

متن کامل

Directional Metropolis–Hastings algorithms on hyperplanes

In this paper we define and study new directional Metropolis–Hastings algorithms that propose states in hyperplanes. Each iteration in directional Metropolis–Hastings algorithms consist of three steps. First a direction is sampled by an auxiliary variable. Then a potential new state is proposed in the subspace defined by this direction and the current state. Lastly, the potential new state is a...

متن کامل

Approximate Markov Chain Monte Carlo Algorithms for Large Scale Bayesian Inference

OF THE DISSERTATION Approximate Markov Chain Monte Carlo Algorithms for Large Scale Bayesian Inference By Anoop Korattikara Balan Doctor of Philosophy in Computer Science University of California, Irvine, 2014 Professor Max Welling, Chair Traditional algorithms for Bayesian posterior inference require processing the entire dataset in each iteration and are quickly getting obsoleted by the proli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1610.06848  شماره 

صفحات  -

تاریخ انتشار 2017