Mechanistic insights into the recognition of 5-methylcytosine oxidation derivatives by the SUVH5 SRA domain
نویسندگان
چکیده
5-Methylcytosine (5 mC) is associated with epigenetic gene silencing in mammals and plants. 5 mC is consecutively oxidized to 5-hydroxymethylcytosine (5 hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by ten-eleven translocation enzymes. We performed binding and structural studies to investigate the molecular basis of the recognition of the 5 mC oxidation derivatives in the context of a CG sequence by the SET- and RING-associated domain (SRA) of the SUVH5 protein (SUVH5 SRA). Using calorimetric measurements, we demonstrate that the SRA domain binds to the hydroxymethylated CG (5hmCG) DNA duplex in a similar manner to methylated CG (5mCG). Interestingly, the SUVH5 SRA domain exhibits weaker affinity towards carboxylated CG (5caCG) and formylated CG (5fCG). We report the 2.6 Å resolution crystal structure of the SUVH5 SRA domain in a complex with fully hydroxymethyl-CG and demonstrate a dual flip-out mechanism, whereby the symmetrical 5hmCs are simultaneously extruded from the partner strands of the DNA duplex and are positioned within the binding pockets of individual SRA domains. The hydroxyl group of 5hmC establishes both intra- and intermolecular interactions in the binding pocket. Collectively, we show that SUVH5 SRA recognizes 5hmC in a similar manner to 5 mC, but exhibits weaker affinity towards 5 hmC oxidation derivatives.
منابع مشابه
A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo.
Cytosine DNA methylation is evolutionarily ancient, and in eukaryotes this epigenetic modification is associated with gene silencing. Proteins with SRA (SET- or RING-associated) methyl-binding domains are required for the establishment and/or maintenance of DNA methylation in both plants and mammals. The 5-methyl-cytosine (5mC)-binding specificity of several SRA domains have been characterized,...
متن کاملRecognition and cleavage of 5-methylcytosine DNA by bacterial SRA-HNH proteins
SET and RING-finger-associated (SRA) domain is involved in establishment and maintenance of DNA methylation in eukaryotes. Proteins containing SRA domains exist in mammals, plants, even microorganisms. It has been established that mammalian SRA domain recognizes 5-methylcytosine (5mC) through a base-flipping mechanism. Here, we identified and characterized two SRA domain-containing proteins wit...
متن کاملRecognition of 5-Hydroxymethylcytosine by the Uhrf1 SRA Domain
Recent discovery of 5-hydroxymethylcytosine (5hmC) in genomic DNA raises the question how this sixth base is recognized by cellular proteins. In contrast to the methyl-CpG binding domain (MBD) of MeCP2, we found that the SRA domain of Uhrf1, an essential factor in DNA maintenance methylation, binds 5hmC and 5-methylcytosine containing substrates with similar affinity. Based on the co-crystal st...
متن کاملThe recognition domain of the methyl-specific endonuclease McrBC flips out 5-methylcytosine
DNA cytosine methylation is a widespread epigenetic mark. Biological effects of DNA methylation are mediated by the proteins that preferentially bind to 5-methylcytosine (5mC) in different sequence contexts. Until now two different structural mechanisms have been established for 5mC recognition in eukaryotes; however, it is still unknown how discrimination of the 5mC modification is achieved in...
متن کاملMethyl-CpG binding domain protein 1 regulates localization and activity of Tet1 in a CXXC3 domain-dependent manner
Cytosine modifications diversify and structure the genome thereby controlling proper development and differentiation. Here, we focus on the interplay of the 5-methylcytosine reader Mbd1 and modifier Tet1 by analyzing their dynamic subcellular localization and the formation of the Tet oxidation product 5-hydroxymethylcytosine in mammalian cells. Our results demonstrate that Mbd1 enhances Tet1-me...
متن کامل