Computing Affine Combinations, Distances, and Correlations for Recursive Partition Functions

نویسندگان

  • Sean Skwerer
  • Heping Zhang
چکیده

Recursive partitioning is the core of several statistical methods including Classification and Regression Trees, Random Forest, and AdaBoost. Despite the popularity of tree based methods, to date, there did not exist methods for combining multiple trees into a single tree, or methods for systematically quantifying the discrepancy between two trees. Taking advantage of the recursive structure in trees we formulated fast algorithms for computing affine combinations, distances and correlations in a vector subspace of recursive partition functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Global Minimizers of the Difference of Two Positive Valued Affine Increasing and Co-radiant Functions

‎Many optimization problems can be reduced to a problem with an increasing and co-radiant objective function by a suitable transformation of variables. Functions, which are increasing and co-radiant, have found many applications in microeconomic analysis. In this paper, the abstract convexity of positive valued affine increasing and co-radiant (ICR) functions are discussed. Moreover, the ...

متن کامل

Optimizing Teleportation Cost in Multi-Partition Distributed Quantum Circuits

There are many obstacles in quantum circuits implementation with large scales, so distributed quantum systems are appropriate solution for these quantum circuits. Therefore, reducing the number of quantum teleportation leads to improve the cost of implementing a quantum circuit. The minimum number of teleportations can be considered as a measure of the efficiency of distributed quantum systems....

متن کامل

An Algorithm for Approximate Multiparametric Convex Programming

For multiparametric convex nonlinear programming problems we propose a recursive algorithm for approximating, within a given suboptimality tolerance, the value function and an optimizer as functions of the parameters. The approximate solution is expressed as a piecewise affine function over a simplicial partition of a subset of the feasible parameters, and it is organized over a tree structure ...

متن کامل

On the quadratic support of strongly convex functions

In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.

متن کامل

Piecewise affine regression via recursive multiple least squares and multicategory discrimination

In nonlinear regression choosing an adequate model structure is often a challenging problem. While simple models (such as linear functions) may not be able to capture the underlying relationship among the variables, over-parametrized models described by a large set of nonlinear basis functions tend to overfit the training data, leading to poor generalization on unseen data. Piecewise-affine (PW...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1512.03697  شماره 

صفحات  -

تاریخ انتشار 2015