Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes
نویسندگان
چکیده
Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.
منابع مشابه
Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria.
A contiguous 3-kilobase pair region of DNA was isolated from Group A Streptococcus pyogenes (GAS) that can direct hyaluronic acid (HA) capsule biosynthesis in acapsular mutants as well as heterologous bacteria. The DNA was identified by transposon 916 insertional mutagenesis and subcloned into a plasmid shuttle vector. Mutant acapsular GAS or Enterococcus faecalis containing this plasmid, but n...
متن کاملTranscription of the Streptococcus pyogenes hyaluronic acid capsule biosynthesis operon is regulated by previously unknown upstream elements.
The important human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) produces a hyaluronic acid (HA) capsule that plays critical roles in immune evasion. Previous studies showed that the hasABC operon encoding the capsule biosynthesis enzymes is under the control of a single promoter, P1, which is negatively regulated by the two-component regulatory system CovR/S. In this work, we ...
متن کاملCharacterization of the galU Gene of Streptococcus pneumoniae Encoding a Uridine Diphosphoglucose Pyrophosphorylase: A Gene Essential for Capsular Polysaccharide Biosynthesis
The galU gene of Streptococcus pneumoniae has been cloned and sequenced. Escherichia coli cells harboring the recombinant plasmid pMMG2 (galU) overproduced a protein that has been shown to correspond to a uridine 5'-triphosphate:glucose-1-phosphate uridylyltransferase (uridine diphosphoglucose [UDP-Glc] pyrophosphorylase) responsible for the synthesis of UDP-Glc, a key compound in the biosynthe...
متن کاملThermoregulation of Capsule Production by Streptococcus pyogenes
The capsule of Streptococcus pyogenes serves as an adhesin as well as an anti-phagocytic factor by binding to CD44 on keratinocytes of the pharyngeal mucosa and the skin, the main entry sites of the pathogen. We discovered that S. pyogenes HSC5 and MGAS315 strains are further thermoregulated for capsule production at a post-transcriptional level in addition to the transcriptional regulation by ...
متن کاملTrading Capsule for Increased Cytotoxin Production: Contribution to Virulence of a Newly Emerged Clade of emm89 Streptococcus pyogenes
UNLABELLED Strains of emm89 Streptococcus pyogenes have become one of the major causes of invasive infections worldwide in the last 10 years. We recently sequenced the genome of 1,125 emm89 strains and identified three major phylogenetic groups, designated clade 1, clade 2, and the epidemic clade 3. Epidemic clade 3 strains, which now cause the great majority of infections, have two distinct ge...
متن کامل