Differential Stimulation of the Na+/H+ Exchanger Determines Chloroquine Uptake in Plasmodium falciparum
نویسندگان
چکیده
Here we describe the identification and characterization of a physiological marker that is associated with the chloroquine-resistant (CQR) phenotype in the human malarial parasite Plasmodium falciparum. Single cell in vivo pH measurements revealed that CQR parasites consistently have an elevated cytoplasmic pH compared to that of chloroquine-sensitive (CQS) parasites because of a constitutively activated Na+/H+ exchanger (NHE). Together, biochemical and physiological data suggest that chloroquine activates the plasmodial NHE of CQS parasites, resulting in a transitory phase of rapid sodium/hydrogen ion exchange during which chloroquine is taken up by this protein. The constitutively stimulated NHE of CQR parasites are capable of little or no further activation by chloroquine. We propose that the inability of chloroquine to stimulate its own uptake through the constitutively activated NHE of resistant parasites constitutes a minimal and necessary event in the generation of the chloroquine-resistant phenotype.
منابع مشابه
Determines Chloroquine Uptake in Plasmodium falciparum
Here we describe the identification and characterization of a physiological marker that is associated with the chloroquine-resistant (CQR) phenotype in the human malarial parasite Plasmodium falciparum. Single cell in vivo pH measurements revealed that CQR parasites consistently have an elevated cytoplasmic pH compared to that of chloroquine-sensitive (CQS) parasites because of a constitutively...
متن کاملClinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers
Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...
متن کاملCellular Uptake of Chloroquine Is Dependent on Binding to Ferriprotoporphyrin IX and Is Independent of NHE Activity in Plasmodium falciparum
Here we provide definitive evidence that chloroquine (CQ) uptake in Plasmodium falciparum is determined by binding to ferriprotoporphyrin IX (FPIX). Specific proteinase inhibitors that block the degradation of hemoglobin and stop the generation of FPIX also inhibit CQ uptake. Food vacuole enzymes can generate cell-free binding, using human hemoglobin as a substrate. This binding accounts for CQ...
متن کاملAccess to hematin: the basis of chloroquine resistance.
The saturable uptake of chloroquine by parasites of Plasmodium falciparum has been attributed to specific carrier-mediated transport of chloroquine. It is suggested that chloroquine is transported in exchange for protons by the parasite membrane Na+/H+ exchanger [J Biol Chem 272:2652-2658 (1997)]. Once inside the parasite, it is proposed that chloroquine inhibits the polymerization of hematin, ...
متن کاملExtensive genetic diversity in the Plasmodium falciparum Na+/H+ exchanger 1 transporter protein implicated in quinine resistance.
The Plasmodium falciparum Na(+)/H(+) exchanger (Pfnhe-1) locus at chromosome 13 and another locus at chromosome 9 have recently been proposed to influence quinine resistance. Here, we sequenced the ms4760 locus of the Pfnhe-1 gene from 244 P. falciparum isolates collected from five different regions of India. A total of 16 different ms4760 alleles (with one to five DNNND repeats) were observed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 140 شماره
صفحات -
تاریخ انتشار 1998