Thermodynamic stability and folding of GroEL minichaperones.

نویسندگان

  • R Golbik
  • R Zahn
  • S E Harding
  • A R Fersht
چکیده

The apical domain of GroEL (residues 191 to 376) and its C-terminally truncated fragment GroEL(191-345) are expressed with high yield in Escherichia coli to give functional monomeric minichaperones. Owing to the reversible folding behaviour of the minichaperones we can analyse the folding of the polypeptide binding domain of the multidomain GroEL protein, the folding of which is known to be irreversible. The apical domain shows two reversible temperature transitions with transition midpoints at 35 degrees C and at 67 degrees C that can be attributed to the unfolding of the C-terminal helices and the domain core, respectively. The native state of the domain core is stabilized by 5.5 kcal mol-1 relative to the unfolded state. The rate constant of folding of the apical domain core is independent of the minichaperone concentration and the presence of the C-terminal alpha-helices. A folding intermediate on the folding pathway is destabilized relative to the native state by 1.6 kcal mol-1, which is also detected by equilibrium and kinetic binding of the dye bis-ANS. Reversible folding of the polypeptide domain of GroEL guarantees highly efficient chaperonin activity within the GroEL toroid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GroEL-GroES-mediated protein folding requires an intact central cavity.

The chaperonin GroEL is an oligomeric double ring structure that, together with the cochaperonin GroES, assists protein folding. Biochemical analyses indicate that folding occurs in a cis ternary complex in which substrate is sequestered within the GroEL central cavity underneath GroES. Recently, however, studies of GroEL "minichaperones" containing only the apical substrate binding subdomain h...

متن کامل

In vivo activities of GroEL minichaperones.

Fragments encompassing the apical domain of GroEL, called minichaperones, facilitate the refolding of several proteins in vitro without requiring GroES, ATP, or the cage-like structure of multimeric GroEL. We have identified the smallest minichaperone that is active in vitro in chaperoning the refolding of rhodanese and cyclophilin A: GroEL(193-335). This finding raises the question of whether ...

متن کامل

Stabilization of GroEL minichaperones by core and surface mutations.

We report the crystal structures of two hexa-substituted mutants of a GroEL minichaperone that are more stable than wild-type by 7.0 and 6.1 kcal mol(-1). Their structures imply that the increased stability results from multiple factors including improved hydrophobic packing, optimised hydrogen bonding and favourable structural rearrangements. It is commonly believed that protein core residues ...

متن کامل

Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES

The in vitro folding of newly translated human CC chemokine receptor type 5 (CCR5), which belongs to the physiologically important family of G protein-coupled receptors (GPCRs), has been studied in a cell-free system supplemented with the surfactant Brij-35. The freshly synthesized CCR5 can spontaneously fold into its biologically active state but only slowly and inefficiently. However, on addi...

متن کامل

Suppression of amyloid fibrils using the GroEL apical domain

In E. coli cells, rescue of non-native proteins and promotion of native state structure is assisted by the chaperonin GroEL. An important key to this activity lies in the structure of the apical domain of GroEL (GroEL-AD) (residue 191-376), which recognizes and binds non-native protein molecules through hydrophobic interactions. In this study, we investigated the effects of GroEL-AD on the aggr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 276 2  شماره 

صفحات  -

تاریخ انتشار 1998