Calcific aortic valve stenosis in old hypercholesterolemic mice.
نویسندگان
چکیده
BACKGROUND Hypercholesterolemia and old age are clinical risk factors for development of aortic valve stenosis, and hypercholesterolemia is a putative therapeutic target. We tested the hypothesis that calcification and aortic valve stenosis would develop in genetically hypercholesterolemic old mice. METHODS AND RESULTS Twenty-four low-density lipoprotein receptor-deficient apolipoprotein B-100-only (LDLr(-/-)ApoB(100/100)) mice were fed normal chow from weaning until age 20.1+/-0.5 months (mean+/-SE; range 17 to 22 months). Twenty-one age-matched (20.8+/-0.9 months, range 17 to 25 months) C57Bl/6 mice served as controls. Echocardiographic imaging was used to assess morphology and function of the aortic valve and left ventricle. A subset of 12 mice underwent invasive hemodynamic assessment of aortic valve function. Functionally significant aortic stenosis, with >75% reduction in valve area, occurred in 8 of 24 LDLr(-/-)ApoB(100/100) mice and in 0 of 21 controls (P=0.01). In the subset that underwent catheterization, mice with echocardiographic evidence of aortic stenosis had a systolic transvalvular gradient of 57+/-6 mm Hg. In the group of all LDLr(-/-)ApoB(100/100) mice with aortic stenosis, left ventricular mass was increased by 67% (P=0.001) and ejection fraction was decreased by 30% (P=0.004) compared with LDLr(-/-)ApoB(100/100) without aortic stenosis. Von Kossa staining of the aortic valve demonstrated abundant mineralization in LDLr(-/-)ApoB(100/100) mice but not in control mice. Superoxide (oxyethidium fluorescence) was present in valve tissue from all 3 groups of mice and was more abundant in mice with aortic stenosis. CONCLUSIONS Hypercholesterolemic LDLr(-/-)ApoB(100/100) mice are prone to develop calcification and oxidative stress in the aortic valve, with functional valvular heart disease, mimicking the clinical syndrome. This discovery holds promise for elucidation of the pathophysiology of aortic valve disease mechanisms and for the design of effective nonsurgical treatment.
منابع مشابه
Osteoprotegerin Inhibits Aortic Valve Calcification and Preserves Valve Function in Hypercholesterolemic Mice
BACKGROUND There are no rigorously confirmed effective medical therapies for calcific aortic stenosis. Hypercholesterolemic Ldlr (-/-) Apob (100/100) mice develop calcific aortic stenosis and valvular cardiomyopathy in old age. Osteoprotegerin (OPG) modulates calcification in bone and blood vessels, but its effect on valve calcification and valve function is not known. OBJECTIVES To determine...
متن کاملPioglitazone attenuates valvular calcification induced by hypercholesterolemia.
OBJECTIVE Development of calcific aortic valve stenosis involves multiple signaling pathways, which may be modulated by peroxisome proliferator-activated receptor-γ). This study tested the hypothesis that pioglitazone (Pio), a ligand for peroxisome proliferator-activated receptor-γ, inhibits calcification of the aortic valve in hypercholesteremic mice. METHODS AND RESULTS Low density lipoprot...
متن کاملFibrotic Aortic Valve Stenosis in Hypercholesterolemic/Hypertensive Mice.
OBJECTIVE Hypercholesterolemia and hypertension are associated with aortic valve stenosis (AVS) in humans. We have examined aortic valve function, structure, and gene expression in hypercholesterolemic/hypertensive mice. APPROACH AND RESULTS Control, hypertensive, hypercholesterolemic (Apoe(-/-)), and hypercholesterolemic/hypertensive mice were studied. Severe aortic stenosis (echocardiograph...
متن کاملSpontaneous Calcific Embolization Associated with Calcific Aortic Stenosis.
SPONTANEOUS calcific embolization associated with calcific aortic steiiosis is considered by some authors to be an uncommon occurrence. -3 The current investigation was undertaken to determine the incidenee and to document the nature, localization, and consequences of calcific embolization oceurring spontaneously in patients with calcific aortic stenosis. Calcific embolization following operati...
متن کاملA novel mouse model of aortic valve stenosis induced by direct wire injury.
OBJECTIVE The response-to-tissue-injury theory is currently the favorite paradigm to investigate valve pathology. To the best of our knowledge, there are currently no in vivo valve injury models. There are few calcific aortic valve stenosis (AVS) models that develop hemodynamically significant stenosis. Here, we investigated the effect of direct mechanical injury on aortic valves in vivo and de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 114 19 شماره
صفحات -
تاریخ انتشار 2006