Impact of ozone exposure on the phagocytic activity of human surfactant protein A (SP-A) and SP-A variants.
نویسندگان
چکیده
Surfactant protein A (SP-A) enhances phagocytosis of Pseudomonas aeruginosa. SP-A1 and SP-A2 encode human (h) SP-A; SP-A2 products enhance phagocytosis more than SP-A1. Oxidation can affect SP-A function. We hypothesized that in vivo and in vitro ozone-induced oxidation of SP-A (as assessed by its carbonylation level) negatively affects its function in phagocytosis (as assessed by bacteria cell association). To test this, we used P. aeruginosa, rat alveolar macrophages (AMs), hSP-As with varying levels of in vivo (natural) oxidation, and ozone-exposed SP-A2 (1A, 1A0) and SP-A1 (6A2, 6A4) variants. SP-A oxidation levels (carbonylation) were measured; AMs were incubated with bacteria in the presence of SP-A, and the phagocytic index was calculated. We found: 1) the phagocytic activity of hSP-A is reduced with increasing levels of in vivo SP-A carbonylation; 2) in vitro ozone exposure of hSP-A decreases its function in a dose-dependent manner as well as its ability to enhance phagocytosis of either gram-negative or gram-positive bacteria; 3) the activity of both SP-A1 and SP-A2 decreases in response to in vitro ozone exposure of proteins with SP-A2 being affected more than SP-A1. We conclude that both in vivo and in vitro oxidative modifications of SP-A by carbonylation reduce its ability to enhance phagocytosis of bacteria and that the activity of SP-A2 is affected more by in vitro ozone-induced oxidation. We speculate that functional differences between SP-A1 and SP-A2 exist in vivo and that the redox status of the lung microenvironment differentially affects function of SP-A1 and SP-A2.
منابع مشابه
Ablation of SP-A has a negative impact on the susceptibility of mice to Klebsiella pneumoniae infection after ozone exposure: sex differences
BACKGROUND Surfactant protein A (SP-A) enhances phagocytosis of bacteria, including Klebsiella pneumoniae, by alveolar macrophages. Ozone, a major air pollutant, can cause oxidation of surfactant and may influence lung immune function. Immune function may also be affected by sex-specific mechanisms. We hypothesized that ablation of SP-A has a negative impact on the susceptibility of mice to Kle...
متن کاملThe effect of ozone exposure on the ability of human surfactant protein a variants to stimulate cytokine production.
Ozone exposure can cause inflammation and impaired lung function. Human surfactant protein A (SP-A) may play a role in inflammation by modulating cytokine production by macrophages. SP-A is encoded by two genes, SP-A1 and SP-A2, and several allelic variants have been characterized for each gene. These allelic variants differ among themselves in amino acids that may exhibit differential sensitiv...
متن کاملHuman SP-A genetic variants and bleomycin-induced cytokine production by THP-1 cells: effect of ozone-induced SP-A oxidation.
Surfactant protein A (SP-A) plays a role in innate host defense. Human SP-A is encoded by two functional genes (SP-A1 and SP-A2), and several alleles have been characterized for each gene. We assessed the effect of in vitro expressed human SP-A genetic variants, on TNF-alpha and IL-8 production by THP-1 cells in the presence of bleomycin, either before or after ozone-induced oxidation of the va...
متن کاملSP-A1 and SP-A2 variants differentially enhance association of Pseudomonas aeruginosa with rat alveolar macrophages.
Chronic airway inflammation caused by Pseudomonas aeruginosa is an important feature of cystic fibrosis (CF). Surfactant protein A (SP-A) enhances phagocytosis of P. aeruginosa. Two genes, SP-A1 and SP-A2, encode human SP-A. We hypothesized that genetically determined differences in the activity of SP-A1 and SP-A2 gene products exist. To test this, we studied association of a nonmucoid P. aerug...
متن کاملSurfactant protein A2 (SP-A2) variants expressed in CHO cells stimulate phagocytosis of Pseudomonas aeruginosa more than do SP-A1 variants.
Surfactant protein A (SP-A) enhances phagocytosis of Pseudomonas aeruginosa. Two functional genes, SP-A1 and SP-A2, encode human SP-A. As we showed before, baculovirus-mediated insect cell-expressed SP-A2 enhances the association of P. aeruginosa with rat alveolar macrophages (rAMs) more than does SP-A1. However, true phagocytosis (internalization) was not shown, and insect cell derived protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 294 1 شماره
صفحات -
تاریخ انتشار 2008