Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles.
نویسندگان
چکیده
Zinc metal nanoparticles in picomolar concentrations strongly enhance odorant responses of olfactory sensory neurons. One- to 2-nm metallic particles contain 40-300 zinc metal atoms, which are not in an ionic state. We exposed rat olfactory epithelium to metal nanoparticles and measured odorant responses by electroolfactogram and whole-cell patch clamp. A small amount of zinc nanoparticles added to an odorant or an extracellular/intracellular particle perfusion strongly increases the odorant response in a dose-dependent manner. Zinc nanoparticles alone produce no odor effects. Copper, gold, or silver nanoparticles do not produce effects similar to those of zinc. If zinc nanoparticles are replaced by Zn(+2) ions in the same concentration range, we observed a reduction of the olfactory receptor neuron odorant response. Based on these observations, we hypothesize that zinc nanoparticles are closely located to the interface between the guanine nucleotide-binding protein and the receptor proteins and are involved in transferring signals in the initial events of olfaction. Our results suggest that zinc metal nanoparticles can be used to enhance and sustain the initial olfactory events.
منابع مشابه
PEGylation of zinc nanoparticles amplifies their ability to enhance olfactory responses to odorant
Olfactory responses are intensely enhanced with the addition of endogenous and engineered primarily-elemental small zinc nanoparticles (NPs). With aging, oxidation of these Zn nanoparticles eliminated the observed enhancement. The design of a polyethylene glycol coating to meet storage requirements of engineered zinc nanoparticles is evaluated to achieve maximal olfactory benefit. The zinc nano...
متن کاملOdorant response kinetics from cultured mouse olfactory epithelium at different ages in vitro.
Mammalian olfactory epithelium can withstand the external environment, undergo life-long regeneration, and respond to thousands of odorant stimuli, making it an attractive system for a variety of studies. Previously, we described a long-lived olfactory coculture of olfactory epithelium and bulb tissues and we present here the kinetic properties of that culture system. Neonatal mouse epithelial-...
متن کاملOlfactory responses to explosives associated odorants are enhanced by zinc nanoparticles.
Many odorants related to manufactured explosives have low volatilities and are barely detectable as odors. We previously reported that zinc metal nanoparticles increased rat olfactory epithelium responses, measured by electroolfactogram (EOG), to several odorants. Here, we report that nanomolar concentrations of zinc metal nanoparticles strongly enhanced olfactory responses to the explosives re...
متن کاملSelective imaging of the receptor neuron population in the olfactory bulb of zebrafish and mice.
The neuronal processing of odors takes place in several types of neurons, including the sensory neurons, projection neurons and interneurons. To understand the neuronal representation of odors and eventually the encoding of those odors it is important to selectively measure the contributions of the different neuron populations to odor-induced neuronal activity. We are analyzing the odor respons...
متن کاملOdorant-induced hyperpolarization and suppression of cAMP-activated current in newt olfactory receptor neurons.
Although many studies have reported that odorants can elicit inhibitory responses as well as excitatory responses in vertebrate olfactory receptor neurons, the cellular mechanisms that underlie this inhibition are unclear. Here we examine the inhibitory effect of odorants on newt olfactory receptor neurons using whole cell patch clamp recording. At high concentrations, odorant stimulation decre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical senses
دوره 34 7 شماره
صفحات -
تاریخ انتشار 2009