Repression of phenol catabolism by organic acids in Ralstonia eutropha.

نویسندگان

  • F Ampe
  • D Léonard
  • N D Lindley
چکیده

During batch growth of Ralstonia eutropha (previously named Alcaligenes eutrophus) on phenol in the presence of acetate, acetate was found to be the preferred substrate; this organic acid was rapidly metabolized, and the specific rate of phenol consumption was considerably decreased, although phenol consumption was not abolished. This decrease corresponded to a drop in phenol hydroxylase and catechol-2,3-dioxygenase specific activities, and the synthesis of the latter was repressed at the transcriptional level. Studies with a mutant not able to consume acetate indicated that the organic acid itself triggers the repression. Other organic acids were also found to repress phenol degradation. One of these, benzoate, was found to completely block the catabolism of phenol (diauxic growth). A mutant unable to metabolize benzoate was also unable to develop on benzoate-phenol mixtures, indicating that the organic acid rather than a metabolite involved in benzoate degradation was responsible for the repression observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diverse protein regulations on PHA formation in Ralstonia eutropha on short chain organic acids

Organic acids are considered as potential substrates for biosynthesis of polyhydroxyalkaonates. The acids may also be the metabolic inhibitors at moderate concentration levels. In this study, Ralstonia eutropha was used to elucidate the protein regulations when the bacterial cells pre-cultivated on glucose were exposed to three representative short chain organic acids, acetic, propionic and lev...

متن کامل

Aerobic degradation of methylene blue from colored effluents by Ralstonia eutropha

The present paper has examined the degrading ability of phenol-oxidizing bacterium, Ralstonia eutropha, for biological removal of methylene blue (MB) from aqueous solutions under aerobic conditions. Results show that MB has been extensively eliminated as a co-metabolism in the presence of supplementary carbon (glucose) and nitrogen (yeast extract and peptone) sources and the experimental observ...

متن کامل

Aerobic degradation of methylene blue from colored effluents by Ralstonia eutropha

The present paper has examined the degrading ability of phenol-oxidizing bacterium, Ralstonia eutropha, for biological removal of methylene blue (MB) from aqueous solutions under aerobic conditions. Results show that MB has been extensively eliminated as a co-metabolism in the presence of supplementary carbon (glucose) and nitrogen (yeast extract and peptone) sources and the experimental observ...

متن کامل

Influence of Matric Potential on Survival and Activity of Genetically Engineered Ralstonia eutropha H850Lr

Although the application of biodegradative genetically engineered micro organisms (GEMs) for bioremediation is very promising, the risks of their release should be assessed before their introduction into the environment. Lux-marked Ralstonia eutropha H850Lr (formerly Alcaligenes eutrophus H850Lr) was introduced into sterile and non-sterile soil microcosms at matric potentials ?2.11, ?30, ?750, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 64 1  شماره 

صفحات  -

تاریخ انتشار 1998