Inhaled CD86 antisense oligonucleotide suppresses pulmonary inflammation and airway hyper-responsiveness in allergic mice.

نویسندگان

  • Jeffrey R Crosby
  • Mausumee Guha
  • David Tung
  • Doreen A Miller
  • Brianna Bender
  • Thomas P Condon
  • Cathie York-DeFalco
  • Richard S Geary
  • Brett P Monia
  • James G Karras
  • Susan A Gregory
چکیده

The B7-family molecule CD86, expressed on the surface of pulmonary and thoracic lymph node antigen-presenting cells, delivers essential costimulatory signals for T-cell activation in response to inhaled allergens. CD86-CD28 signaling is involved in priming allergen-specific T cells, but it is unclear whether these interactions play a role in coordinating memory T-helper 2 cell responses. In the ovalbumin (OVA)-induced mouse model of asthma, administration of CD86-specific antibody before systemic sensitization suppresses inhaled OVA-induced pulmonary inflammation and airway hyper-responsiveness (AHR). In previously OVA-sensitized mice, systemic and intranasal coadministration of CD86 antibody is required to produce these effects. To directly assess the importance of pulmonary CD86 expression in secondary immune responses to inhaled allergens, mice were sensitized and locally challenged with nebulized OVA before treatment with an inhaled aerosolized CD86 antisense oligonucleotide (ASO). CD86 ASO treatment suppressed OVA-induced up-regulation of CD86 protein expression on pulmonary dendritic cells and macrophages as well as on recruited eosinophils. Suppression of CD86 protein expression correlated with decreased methacholine-induced AHR, airway inflammation, and mucus production following rechallenge with inhaled OVA. CD86 ASO treatment reduced BAL eotaxin levels, but it did not reduce CD86 protein on cells in the draining lymph nodes of the lung, and it had no effect on serum IgE levels, suggesting a local and not a systemic effect. These results demonstrate that CD86 expression on pulmonary antigen-presenting cells plays a vital role in regulating pulmonary secondary immune responses and suggest that treatment with an inhaled CD86 ASO may have utility in asthma and other chronic inflammatory lung conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivated Mycobacterium phlei inhalation ameliorates allergic asthma through modulating the balance of CD4+CD25+ regulatory T and Th17 cells in mice

Objective(s): Th2 response is related to the aetiology of asthma, but the underlying mechanism is unclear. To address this point, the effect of nebulized inhalation of inactivated Mycobacterium phlei on modulation of asthmatic  airway  inflammation was investigated. Materials and Methods: 24 male BALB/c mice were randomly divided into three groups: control group (Group A), asthma model group (G...

متن کامل

Inhibition of IL-13 by Antisense Oligonucleotide Changes Immunoglobulin Isotype Profile in Cultured B-Lymphocytes

The link between IL-13 and bronchial hyper-responsiveness has brought this cytokine as a potential therapeutic target for asthma and allergic diseases. At the present study, we address the role of B cell derived IL-13 in the IgE and other immunoglobulin development. Antisense oligo for human IL-13 m-RNA was used to study IgE down regulation. Human B-lymphocytes were purified by positive selecti...

متن کامل

The RNA Binding Protein Mex-3B Is Required for IL-33 Induction in the Development of Allergic Airway Inflammation.

Allergic airway inflammation is one of the primary features of allergic asthma. Interleukin-33 (IL-33) is recognized as a key pro-inflammatory cytokine that mediates allergic airway inflammation, and its expression is elevated in this condition, but little is known about the regulatory mechanisms underlying IL-33 induction. Here, we show that the RNA binding protein Mex-3B plays a critical role...

متن کامل

Chlamydia muridarum Lung Infection in Infants Alters Hematopoietic Cells to Promote Allergic Airway Disease in Mice

BACKGROUND Viral and bacterial respiratory tract infections in early-life are linked to the development of allergic airway inflammation and asthma. However, the mechanisms involved are not well understood. We have previously shown that neonatal and infant, but not adult, chlamydial lung infections in mice permanently alter inflammatory phenotype and physiology to increase the severity of allerg...

متن کامل

Treatment of Allergic Airway Inflammation and Hyperresponsiveness by Antisense-Induced Local Blockade of Gata-3 Expression

Recent studies in transgenic mice have revealed that expression of a dominant negative form of the transcription factor GATA-3 in T cells can prevent T helper cell type 2 (Th2)-mediated allergic airway inflammation in mice. However, it remains unclear whether GATA-3 plays a role in the effector phase of allergic airway inflammation and whether antagonizing the expression and/or function of GATA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 321 3  شماره 

صفحات  -

تاریخ انتشار 2007