Toward an ideal polymer binder design for high-capacity battery anodes.
نویسندگان
چکیده
The dilemma of employing high-capacity battery materials and maintaining the electronic and mechanical integrity of electrodes demands novel designs of binder systems. Here, we developed a binder polymer with multifunctionality to maintain high electronic conductivity, mechanical adhesion, ductility, and electrolyte uptake. These critical properties are achieved by designing polymers with proper functional groups. Through synthesis, spectroscopy, and simulation, electronic conductivity is optimized by tailoring the key electronic state, which is not disturbed by further modifications of side chains. This fundamental allows separated optimization of the mechanical and swelling properties without detrimental effect on electronic property. Remaining electronically conductive, the enhanced polarity of the polymer greatly improves the adhesion, ductility, and more importantly, the electrolyte uptake to the levels of those available only in nonconductive binders before. We also demonstrate directly the performance of the developed conductive binder by achieving full-capacity cycling of silicon particles without using any conductive additive.
منابع مشابه
A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery.
A sodium carboxymethyl cellulose porous scaffold has been obtained using the slurry spray technique as a binder for silicon anodes that demonstrate remarkably improved cycling stability and rate performance.
متن کاملImproved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...
متن کاملToward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid.
Si-based Li-ion battery anodes offer specific capacity an order of magnitude beyond that of conventional graphite. However, the formation of stable Si anodes is a challenge because of significant volume changes occurring during their electrochemical alloying and dealloying with Li. Binder selection and optimization may allow significant improvements in the stability of Si-based anodes. Most stu...
متن کاملCarbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode
Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacryli...
متن کاملComposite doped emeraldine–polyethylene oxide-bonded lithium-ion nano-tin anodes with electronic–ionic mixed conduction
Mixed-conducting lithium-ion doped emeraldine polyaniline (PAni)–polyethylene oxide (PEO) blends have been developed to achieve an optimal electronic– ionic conductivity balance in nano-tin composite anodes. Electrochemical evaluation was performed on the anodes with differing electrode preparation procedures, doping methods and PEO contents. Results indicate that both good electronic and ionic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 135 32 شماره
صفحات -
تاریخ انتشار 2013