Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power.
نویسندگان
چکیده
Micropixelated blue (470 nm) and ultraviolet (370 nm) AlInGaN light emitting diode ('micro-LED') arrays have been fabricated in flip-chip format with different pixel diameters (72 microm and 30 microm at, respectively, 100 and 278 pixels/mm(2)). Each micro-LED pixel can be individually-addressed and the devices possess a specially designed n-common contact incorporated to ensure uniform current injection and consequently uniform light emission across the array. The flip-chip micro-LEDs show, per pixel, high continuous output intensity of up to 0.55 microW/microm(2) (55 W/cm(2)) at an injection current density of 10 kA/cm(2) and can sustain continuous injection current densities of up to 12 kA/cm(2) before breakdown. We also demonstrate that nanosecond pulsed output operation of these devices with per pixel onaxis average peak intensity up to 2.9 microW/microm(2) (corresponding to energy of 45pJ per 22ns optical pulse) can be achieved. We investigate the pertinent performance characteristics of these arrays for micro-projection applications, including the prospect of integrated optical pumping of organic semiconductor lasers.
منابع مشابه
Output Properties of Transparent Submount Packaged FlipChip Light-Emitting Diode Modules
Flip chip technology has been widely adopted in modern power light-emitting diode (LED) fabrications and its output efficiency is closely related to the submount material properties. Here, we present the electrical, optical and thermal properties of flip chip light-emitting diodes mounted on transparent sapphire and borosilicate glass which have shown a higher output luminous flux when compared...
متن کاملMask-free photolithographic exposure using a matrix-addressable micropixellated AlInGaN ultraviolet light-emitting diode
We report the integration of a UV-curable polymer microlens array onto a matrix-addressable, 368-nm-wavelength, light-emitting diode device containing 64364 micropixel elements. The geometrical and optical parameters of the microlenses were carefully chosen to allow the highly divergent emission from each micropixel to be collimated into a narrow beam of about 8-mm diam, over a distance of more...
متن کاملInvestigation of the Effect of Recombination on Superluminescent Light-Emitting Diode Output Power Based on Nitride Pyramid Quantum Dots
In this article, the temperature behavior of output power of superluminescent light-emitting diode (SLED) by considering the effect of non-radiative recombination coefficient, non-radiative spontaneous emission coefficient and Auger recombination coefficients has been investigated. For this aim, GaN pyramidal quantum dots were used as the active region. The numerical method has been used to sol...
متن کاملRGB-Stack Light Emitting Diode Modules with Transparent Glass Circuit Board and Oil Encapsulation
The light emitting diode (LED) is widely used in modern solid-state lighting applications, and its output efficiency is closely related to the submounts' material properties. Most submounts used today, such as low-power printed circuit boards (PCBs) or high-power metal core printed circuit boards (MCPCBs), are not transparent and seriously decrease the output light extraction. To meet the requi...
متن کاملCMOS driven micro-pixel LEDs integrated with single photon avalanche diodes for time resolved fluorescence measurements
We describe a single chip approach to time resolved fluorescence measurements based on time correlated single photon counting. Using a single complementary metal oxide silicon (CMOS) chip, bump bonded to a 4 × 16 array of AlInGaN UV micro-pixellated light-emitting diodes, a prototype integrated microsystem has been built that demonstrates fluorescence excitation and detection on a nanosecond ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 16 13 شماره
صفحات -
تاریخ انتشار 2008