Dirac submanifolds and Poisson involutions

نویسنده

  • PING XU
چکیده

Dirac submanifolds are a natural generalization in the Poisson category for symplectic submanifolds of a symplectic manifold. In a certain sense they correspond to symplectic subgroupoids of the symplectic groupoid of the given Poisson manifold. In particular, Dirac submanifolds arise as the stable locus of a Poisson involution. In this paper, we provide a general study for these submanifolds including both local and global aspects. In the second part of the paper, we study Poisson involutions and the induced Poisson structures on their stable locuses. We discuss the Poisson involutions on a special class of Poisson groups, and more generally Poisson groupoids, called symmetric Poisson groups (and symmetric Poisson groupoids). Many well-known examples, including the standard Poisson group structures on semi-simple Lie groups, Bruhat Poisson structures on compact semi-simple Lie groups, and Poisson groupoids connecting with dynamical r-matrices of semi-simple Lie algebras are symmetric, so they admit a Poisson involution. For symmetric Poisson groups, the relation between the stable locus Poisson structure and Poisson symmetric spaces is discussed. As a consequence, we show that the Dubrovin-Ugaglia-Boalch-Bondal Poisson structure on the space of Stokes matrices U+ appearing in Dubrovin’s theory of Frobenius manifolds is indeed a Poisson symmetric space for the Poisson group B+ ∗B−.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tangent Dirac structures and submanifolds by Izu Vaisman

We write down the local equations that characterize the sub-manifolds N of a Dirac manifold M which have a normal bundle that is either a coisotropic or an isotropic submanifold of T M endowed with the tangent Dirac structure. In the Poisson case, these formulas prove again a result of Xu: the submanifold N has a normal bundle which is a coisotropic submanifold of T M with the tangent Poisson s...

متن کامل

Generalized Complex Submanifolds

We introduce the notion of twisted generalized complex submanifolds and describe an equivalent characterization in terms of Poisson-Dirac submanifolds. Our characterization recovers a result of Vaisman [21]. An equivalent characterization is also given in terms of spinors. As a consequence, we show that the fixed locus of an involution preserving a twisted generalized complex structure is a twi...

متن کامل

Pre-poisson Submanifolds

In this note we consider an arbitrary submanifold C of a Poisson manifold P and ask whether it can be embedded coisotropically in some bigger submanifold of P . We define the classes of submanifolds relevant to the question (coisotropic, Poisson-Dirac, pre-Poisson ones), present an answer to the above question and consider the corresponding picture at the level of Lie groupoids, making concrete...

متن کامل

E1(M )-Dirac structures and Jacobi structures

Using E1(M)-Dirac structures, a notion introduced by A. Wade, we obtain conditions under which a submanifold of a Jacobi manifold has an induced Jacobi structure, generalizing the result obtained by Courant for Dirac structures and submanifolds of a Poisson manifold.

متن کامل

Dirac reduction revisited

The procedure of Dirac reduction of Poisson operators on submanifolds is discussed within a particularly useful special realization of the general Marsden-Ratiu reduction procedure. The Dirac classification of constraints on ’first-class’ constraints and ’second-class’ constraints is reexamined. AMS 2000 Subject Classification: 70H45, 53D17, 70G45

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001