Compressed Sensing: Ultra-Wideband Channel Estimation Based on FIR Filtering Matrix

نویسندگان

  • Huanan Yu
  • Shuxu Guo
چکیده

Ultra-wideband (UWB) communication (Win & Scholtz, 1998; Yang & Giannakis, 2004a) is a fast emerging technology since the Federal Communication Commission released a spectral mask in the spring of 2002. The major reason for UWB technology to receive much attention is its promising ability to provide low-power consumption, high bit rate and multipath resolution, and coexist with the narrow-band system by trading bandwidth for a reduced transmits power. In the impulse radio UWB (IR-UWB) systems, the duration of pulse is ultra-short, typically on the order of nanoseconds. On one hand, the ultra-short impulses make it possible to resolve and combine signal echoes with path length differential down to 1 ft exploiting the diversity inherent in the multipath channel and improving the position accuracy. On the other hand, the new technical (Witrisal et al., 2009) challenges are posed: (1) analog-to-digital converters (ADCs) working at the Nyquist rate are in general very expansive and power demanding; (2) the synchronization which is accomplished at the scale of sub nanosecond duration is extremely complex; (3) capture a sufficient amount of the rich multipath diversity need accuracy channel estimation. Compare to the transmitter easily implement, the IR-UWB receiver are too complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra Wideband Channel Estimation based on Kalman Filter Compressed Sensing

in this paper, a novel time-varying channel estimation approach based on Kalman filter compressive sensing is proposed for the high sampling problem of ultra wideband (UWB) system considering the sparse of the channel impulse response. The direct sequence UWB signal is formulated to the mathematical model of compressed sensing after down sampling. The receiver recovery the channel impulse respo...

متن کامل

60 GHz ultra-wideband channel estimation based on a cluster sparsity compressed sensing

The propagations of 60 GHz millimeter-wave system, which occupies an enormous operation bandwidth, are always known to be intensively dispersive. This may, in practice, pose great challenges to the estimation of channel state information. In this article, we investigated a promising compressed sensing (CS) algorithm and its practical applications in the channel estimations of emerging 60 GHz mi...

متن کامل

Wideband Spectrum Sensing based on Sparse Channel State Recovery in Cognitive Radio Networks

Motivated by the compressed sensing sparse channel estimation problem, the complete channel state is sparse under the conditions of low spectral efficiency. Other than traditional method of looking for the perception of spectrum holes, this paper focus on the sparse of occupied sub-channels. Based on compressed sensing technology, a novel cooperative wideband spectrum sensing method is proposed...

متن کامل

Compressive Estimation of Cluster-sparse Channels

Cluster-sparse multipath channels, i.e., non-zero taps occurring in clusters, exist frequently in many communication systems, e.g., underwater acoustic (UWA), ultra-wide band (UWB), and multiple-antenna communication systems. Conventional sparse channel estimation methods often ignore the additional structure in the problem formulation. In this paper, we propose an improved compressive channel ...

متن کامل

Compressive Sensing Based Ultra-wideband Communication System

Sampling is the bottleneck for ultra-wideband (UWB) communication. Our major contribution is to exploit the channel itself as part of compressive sampling, through waveform-level pre-coding at the transmitter. We also have demonstrated a UWB system baseband bandwidth (5 GHz) that would, if with the conventional sampling technology, take decades for the industry to reach. The concept has been de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014