Linear Koszul Duality and Affine Hecke Algebras

نویسندگان

  • IVAN MIRKOVIĆ
  • SIMON RICHE
چکیده

In this paper we prove that the linear Koszul duality equivalence constructed in a previous paper provides a geometric realization of the Iwahori-Matsumoto involution of affine Hecke algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iwahori-Matsumoto involution and linear Koszul Duality

In this paper we use linear Koszul duality, a geometric version of the standard duality between modules over symmetric and exterior algebras studied in [MR1, MR2] to give a geometric realization of the Iwahori–Matsumoto involution of affine Hecke algebras. More generally we prove that linear Koszul duality is compatible with convolution in a general context related to convolution algebras.

متن کامل

Linear Koszul Duality and Fourier Transform for Convolution Algebras

In this paper we prove that the linear Koszul duality isomorphism for convolution algebras in K-homology of [MR3] and the Fourier transform isomorphism for convolution algebras in Borel– Moore homology of [EM] are related by the Chern character. So, Koszul duality appears as a categorical upgrade of Fourier transform of constructible sheaves. This result explains the connection between the cate...

متن کامل

Linear Koszul Duality

In this paper we construct, for F1 and F2 subbundles of a vector bundle E, a “Koszul duality” equivalence between derived categories of Gm-equivariant coherent (dg-)sheaves on the derived intersection F1 R ∩EF2, and the corresponding derived intersection F ⊥ 1 R ∩E∗F ⊥ 2 . We also propose applications to Hecke algebras.

متن کامل

Gale Duality and Koszul Duality

Given a hyperplane arrangement in an affine space equipped with a linear functional, we define two finite-dimensional, noncommutative algebras, both of which are motivated by the geometry of hypertoric varieties. We show that these algebras are Koszul dual to each other, and that the roles of the two algebras are reversed by Gale duality. We also study the centers and representation categories ...

متن کامل

2 1 A pr 1 99 8 LIE ALGEBRAS AND DEGENERATE AFFINE HECKE ALGEBRAS OF TYPE

We construct a family of exact functors from the BernsteinGelfand-Gelfand category O of sln-modules to the category of finite-dimensional representations of the degenerate affine Hecke algebra Hl of GLl. These functors transform Verma modules to standard modules or zero, and simple modules to simple modules or zero. Any simple Hl-module can be thus obtained. Introduction The classical Frobenius...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009