Basal renal O2 consumption and the efficiency of O2 utilization for Na+ reabsorption.

نویسندگان

  • Roger G Evans
  • Gerard K Harrop
  • Jennifer P Ngo
  • Connie P C Ow
  • Paul M O'Connor
چکیده

We examined how the presence of a fixed level of basal renal O2 consumption (Vo2(basal); O2 used for processes independent of Na(+) transport) confounds the utility of the ratio of Na(+) reabsorption (TNa(+)) to total renal Vo2 (Vo2(total)) as an index of the efficiency of O2 utilization for TNa(+). We performed a systematic review and additional experiments in anesthetized rabbits to obtain the best possible estimate of the fractional contribution of Vo2(basal) to Vo2(total) under physiological conditions (basal percent renal Vo2). Estimates of basal percent renal Vo2 from 24 studies varied from 0% to 81.5%. Basal percent renal Vo2 varied with the fractional excretion of Na(+) (FENa(+)) in the 14 studies in which FENa(+) was measured under control conditions. Linear regression analysis predicted a basal percent renal Vo2 of 12.7-16.5% when FENa(+) = 1% (r(2) = 0.48, P = 0.001). Experimentally induced changes in TNa(+) altered TNa(+)/Vo2(total) in a manner consistent with theoretical predictions. We conclude that, because Vo2(basal) represents a significant proportion of Vo2(total), TNa(+)/Vo2(total) can change markedly when TNa(+) itself changes. Therefore, caution should be taken when TNa(+)/Vo2(total) is interpreted as a measure of the efficiency of O2 utilization for TNa(+), particularly under experimental conditions where TNa(+) or Vo2(total) changes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dietary sodium induces a redistribution of the tubular metabolic workload

KEY POINTS Body Na+ content is tightly controlled by regulated urinary Na+ excretion. The intrarenal mechanisms mediating adaptation to variations in dietary Na+ intake are incompletely characterized. We confirmed and expanded observations in mice that variations in dietary Na+ intake do not alter the glomerular filtration rate but alter the total and cell-surface expression of major Na+ transp...

متن کامل

A radical approach to balancing the tides of tubular flow.

HOMER SMITH POSTULATED the modern day glomerulus to have evolved as a mechanism to rapidly remove water from the body (13). Smith describes the evolution of the mammalian glomerulus in terms of its function as a high-pressure filter, powered by the beating heart, that separates water from other constituents of the plasma, chiefly plasma proteins and cells (13). The extreme pressures needed to e...

متن کامل

Role of nitric oxide in the control of renal oxygen consumption and the regulation of chemical work in the kidney.

Inhibition of NO synthesis has recently been shown to increase oxygen extraction in vivo, and NO has been proposed to play a significant role in the regulation of oxygen consumption by both skeletal and cardiac muscle in vivo and in vitro. It was our aim to determine whether NO also has such a role in the kidney, a tissue with a relatively low basal oxygen extraction. In chronically instrumente...

متن کامل

Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats.

Early stage diabetic nephropathy is characterized by glomerular hyperfiltration and reduced renal tissue Po2. Recent observations have indicated that increased tubular Na(+)-glucose linked transport (SGLT) plays a role in the development of diabetes-induced hyperfiltration. The aim of the present study was to determine how inhibition of SLGT impacts upon Po2 in the diabetic rat kidney. Diabetes...

متن کامل

Superoxide enhances Na-K-2Cl cotransporter activity in the thick ascending limb.

Superoxide (O2-) enhances Na reabsorption by the thick ascending limb (THAL). Na absorption in this segment involves the Na-K-2Cl cotransporter, K channel, and Na-K-ATPase. We hypothesized that O2- stimulates NaCl absorption primarily by enhancing Na-K-2Cl cotransport. First, we measured steady-state intracellular Na (Nai) and chloride (Cli). Xanthine oxidase (XO; 0.75 mU/ml) and hypoxanthine (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 306 5  شماره 

صفحات  -

تاریخ انتشار 2014