Imaging the alphavirus exit pathway.

نویسندگان

  • Maria Guadalupe Martinez
  • Erik-Lee Snapp
  • Geoffrey S Perumal
  • Frank P Macaluso
  • Margaret Kielian
چکیده

UNLABELLED Alphaviruses are small enveloped RNA viruses with highly organized structures that exclude host cell proteins. They contain an internal nucleocapsid and an external lattice of the viral E2 and E1 transmembrane proteins. Alphaviruses bud from the plasma membrane (PM), but the process and dynamics of alphavirus assembly and budding are poorly understood. Here we generated Sindbis viruses (SINVs) with fluorescent protein labels on the E2 envelope protein and exploited them to characterize virus assembly and budding in living cells. During virus infection, E2 became enriched in localized patches on the PM and in filopodium-like extensions. These E2-labeled patches and extensions contained all of the viral structural proteins. Correlative light and electron microscopy studies established that the patches and extensions colocalized with virus budding structures, while light microscopy showed that they excluded a freely diffusing PM marker protein. Exclusion required the interaction of the E2 protein with the capsid protein, a critical step in virus budding, and was associated with the immobilization of the envelope proteins on the cell surface. Virus infection induced two distinct types of extensions: tubulin-negative extensions that were ∼2 to 4 μm in length and excluded the PM marker, and tubulin-positive extensions that were >10 μm long, contained the PM marker, and could transfer virus particles to noninfected cells. Tubulin-positive extensions were selectively reduced in cells infected with a nonbudding SINV mutant. Together, our data support a model in which alphavirus infection induces reorganization of the PM and cytoskeleton, leading to virus budding from specialized sites. IMPORTANCE Alphaviruses are important and widely distributed human pathogens for which vaccines and antiviral therapies are urgently needed. These small highly organized viruses bud from the host cell PM. Virus assembly and budding are critical but little understood steps in the alphavirus life cycle. We developed alphaviruses with fluorescent protein tags on one of the viral membrane (envelope) proteins and used a variety of microscopy techniques to follow the envelope protein and a host cell PM protein during budding. We showed that alphavirus infection induced the formation of patches and extensions on the PM where the envelope proteins accumulate. These sites excluded other PM proteins and correlated with virus budding structures. Exclusion of PM proteins required specific interactions of the viral envelope proteins with the internal capsid protein. Together, our data indicate that alphaviruses extensively reorganize the cell surface and cytoskeleton to promote their assembly and budding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Alphavirus Exit Pathway: What We Know and What We Wish We Knew

Alphaviruses are enveloped positive sense RNA viruses and include serious human pathogens, such as the encephalitic alphaviruses and Chikungunya virus. Alphaviruses are transmitted to humans primarily by mosquito vectors and include species that are classified as emerging pathogens. Alphaviruses assemble highly organized, spherical particles that bud from the plasma membrane. In this review, we...

متن کامل

Cholesterol is required in the exit pathway of Semliki Forest virus

The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a membrane fusion reaction triggered by low pH. For fusion to occur cholesterol is required in the target membrane, as demonstrated both in in vitro fusion assays and in vivo for virus infection of a host cell. In this paper we examine the role of cholesterol in postfusion events in the SFV life cycle. Cholesterol-depleted in...

متن کامل

The cholesterol requirement for sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence.

Semliki Forest virus (SFV) and Sindbis virus (SIN) are enveloped alphaviruses that enter cells via low-pH-triggered fusion in the endocytic pathway and exit by budding from the plasma membrane. Previous studies with cholesterol-depleted insect cells have shown that SFV requires cholesterol in the cell membrane for both virus fusion and efficient exit of progeny virus. An SFV mutant, srf-3, show...

متن کامل

Imaging of the alphavirus capsid protein during virus replication.

Alphaviruses are enveloped viruses with highly organized structures. The nucleocapsid (NC) core contains a capsid protein lattice enclosing the plus-sense RNA genome, and it is surrounded by a lipid bilayer containing a lattice of the E1 and E2 envelope glycoproteins. Capsid protein is synthesized in the cytoplasm and particle budding occurs at the plasma membrane (PM), but the traffic and asse...

متن کامل

The role of E3 in pH protection during alphavirus assembly and exit.

Alphaviruses are small enveloped viruses whose surface is covered by spikes composed of trimers of E2/E1 glycoprotein heterodimers. During virus entry, the E2/E1 dimer dissociates within the acidic endosomal environment, freeing the E1 protein to mediate fusion of the viral and endosome membranes. E2 is synthesized as a precursor, p62, which is cleaved by furin in the late secretory pathway to ...

متن کامل

BST2/Tetherin Inhibition of Alphavirus Exit

Alphaviruses such as chikungunya virus (CHIKV) and Semliki Forest virus (SFV) are small enveloped RNA viruses that bud from the plasma membrane. Tetherin/BST2 is an interferon-induced host membrane protein that inhibits the release of many enveloped viruses via direct tethering of budded particles to the cell surface. Alphaviruses have highly organized structures and exclude host membrane prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 88 12  شماره 

صفحات  -

تاریخ انتشار 2014