An empirical comparison of spatial scan statistics for outbreak detection
نویسنده
چکیده
BACKGROUND The spatial scan statistic is a widely used statistical method for the automatic detection of disease clusters from syndromic data. Recent work in the disease surveillance community has proposed many variants of Kulldorff's original spatial scan statistic, including expectation-based Poisson and Gaussian statistics, and incorporates a variety of time series analysis methods to obtain expected counts. We evaluate the detection performance of twelve variants of spatial scan, using synthetic outbreaks injected into four real-world public health datasets. RESULTS The relative performance of methods varies substantially depending on the size of the injected outbreak, the average daily count of the background data, and whether seasonal and day-of-week trends are present. The expectation-based Poisson (EBP) method achieves high performance across a wide range of datasets and outbreak sizes, making it useful in typical detection scenarios where the outbreak characteristics are not known. Kulldorff's statistic outperforms EBP for small outbreaks in datasets with high average daily counts, but has extremely poor detection power for outbreaks affecting more than of the monitored locations. Randomization testing did not improve detection power for the four datasets considered, is computationally expensive, and can lead to high false positive rates. CONCLUSION Our results suggest four main conclusions. First, spatial scan methods should be evaluated for a variety of different datasets and outbreak characteristics, since focusing only on a single scenario may give a misleading picture of which methods perform best. Second, we recommend the use of the expectation-based Poisson statistic rather than the traditional Kulldorff statistic when large outbreaks are of potential interest, or when average daily counts are low. Third, adjusting for seasonal and day-of-week trends can significantly improve performance in datasets where these trends are present. Finally, we recommend discontinuing the use of randomization testing in the spatial scan framework when sufficient historical data is available for empirical calibration of likelihood ratio scores.
منابع مشابه
A Nonparametric Scan Statistic for Multivariate Disease Surveillance
OBJECTIVE We present a new method for multivariate outbreak detection, the “nonparametric scan statistic” (NPSS). NPSS enables fast and accurate detection of emerging space-time clusters using multiple disparate data streams, including nontraditional data sources where standard parametric model assumptions are incorrect. BACKGROUND Expectation-based scan statistics [1] extend the traditional sp...
متن کاملSpatial and Temporal Algorithm Evaluation for Detecting Over-The-Counter Thermometer Sale Increases during 2009 H1N1 Pandemic
BACKGROUND Spatial outbreak detection algorithms using routinely collected healthcare data have been developed since the late 90s to identify and locate disease outbreaks. However, current well-received spatial algorithms assume only one outbreak cluster present at the same point of time which may not be valid during a pandemic when several clusters of geographic areas concurrently occur. Based...
متن کاملDiagnostic Accuracy of CT Scan for Detection of Cervical Lymph Node Metastasis in Oral Squamous Cell Carcinoma in Comparison with Histopathological Analysis After Neck Dissection
Objectives: Presence/absence of cervical lymph node metastasis plays a critical role in prognosis and survival of patients with oral squamous cell carcinoma (SCC). This study was designed to assess the diagnostic accuracy of computed tomography (CT) scan for detection of cervical lymph node metastasis in oral SCC in comparison with histopathological analysis after neck dissection Methods: In...
متن کاملFast subset scan for multivariate event detection.
We present new subset scan methods for multivariate event detection in massive space-time datasets. We extend the recently proposed 'fast subset scan' framework from univariate to multivariate data, enabling computationally efficient detection of irregular space-time clusters even when the numbers of spatial locations and data streams are large. For two variants of the multivariate subset scan,...
متن کاملA flexibly shaped space-time scan statistic for disease outbreak detection and monitoring
BACKGROUND Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Health Geographics
دوره 8 شماره
صفحات -
تاریخ انتشار 2009