H2AX Is Required for Recombination Between Immunoglobulin Switch Regions but Not for Intra-Switch Region Recombination or Somatic Hypermutation
نویسندگان
چکیده
Changes in chromatin structure induced by posttranslational modifications of histones are important regulators of genomic function. Phosphorylation of histone H2AX promotes DNA repair and helps maintain genomic stability. Although B cells lacking H2AX show impaired class switch recombination (CSR), the precise role of H2AX in CSR and somatic hypermutation (SHM) has not been defined. We show that H2AX is not required for SHM, suggesting that the processing of DNA lesions leading to SHM is fundamentally different from CSR. Impaired CSR in H2AX-/- B cells is not due to alterations in switch region transcription, accessibility, or aberrant joining. In the absence of H2AX, short-range intra-switch region recombination proceeds normally while long-range inter-switch region recombination is impaired. Our results suggest a role for H2AX in regulating the higher order chromatin remodeling that facilitates switch region synapsis.
منابع مشابه
ATM Is Required for Efficient Recombination between Immunoglobulin Switch Regions
Ataxia telangiectasia mutated (ATM) kinase is critical for initiating the signaling pathways that lead to cell cycle checkpoints and DNA double strand break repair. In the absence of ATM, humans and mice show a primary immunodeficiency that includes low serum antibody titers, but the role of ATM in antigen-driven immunoglobulin gene diversification has not been defined. Here, we show that altho...
متن کاملATM is not required in somatic hypermutation of VH, but is involved in the introduction of mutations in the switch mu region.
Class switch recombination (CSR) and somatic hypermutation (SHM) are mechanistically related processes that share common key factors such as activation-induced cytidine deaminase. We have previously shown a role for ATM (mutated in ataxia-telangiectasia) in CSR. In this paper we show that the frequency, distribution, and nature of base pair substitutions in the Ig variable (V) heavy chain genes...
متن کاملAID Is Essential for Immunoglobulin V Gene Conversion in a Cultured B Cell Line
Following productive V gene rearrangement, the functional immunoglobulin genes in the B lymphocytes of man and mouse are subjected to two further types of genetic modification. Class-switch recombination, a region-specific but largely nonhomologous recombination process, leads to a change in constant region of the expressed antibody. Somatic hypermutation introduces multiple single nucleotide s...
متن کاملSomatic Hypermutation of Immunoglobulin Genes Merging Mechanisms for Genetic Diversity
Somatic hypermutation is critical for the generation of high-affinity antibodies and effective immune responses, but its molecular mechanism remains poorly understood. Recent studies have identified DNA strand lesions associated with the hypermutation process and suggested the involvement of specific repair molecules and pathways. Particularly exciting has been the discovery of a putative RNA e...
متن کاملA Common Mechanism that Underpins Antibody Diversification
Targeting of AID to antibody variable (V) regions results in somatic hypermutation, whereas its recruitment to switch (S) regions leads to class-switch recombination. Yeap et al. find that the mechanism by which variable and switch regions recruit AID essentially is the same but that the two regions differ in the density of double-stranded DNA breaks that are generated. These lead to either poi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 197 شماره
صفحات -
تاریخ انتشار 2003