First-principles quantum molecular dynamics study of TixZr1−xN(111)/SiNy heterostructures and comparison with experimental results
نویسندگان
چکیده
The heterostructures of five monolayers B1-Ti x Zr1-x N(111), x = 1.0, 0.6, 0.4 and 0.0 (where B1 is a NaCl-type structure) with one monolayer of a Si3N4-like Si2N3 interfacial layer were investigated by means of first-principles quantum molecular dynamics and a structure optimization procedure using the Quantum ESPRESSO code. Slabs consisting of stoichiometric TiN and ZrN and random, as well as segregated, B1-Ti x Zr1-x N(111) solutions were considered. The calculations of the B1-Ti x Zr1-x N solid solutions, as well as of the heterostructures, showed that the pseudo-binary TiN-ZrN system exhibits a miscibility gap. The segregated heterostructures in which Zr atoms surround the Si y N z interface were found to be the most stable. For the Zr-rich heterostructures, the total energy of the random solid solution was lower compared to that of the segregated one, whereas for the Ti-rich heterostructures the opposite tendency was observed. Hard and super hard Zr-Ti-Si-N coatings with thicknesses from 2.8 to 3.5 μm were obtained using a vacuum arc source with high frequency stimulation. The samples were annealed in a vacuum and in air at 1200 °C. Experimental investigations of Zr-Ti-N, Zr-Ti-Si-N and Ti-Si-N coatings with different Zr, Ti and Si concentrations were carried out for comparison with results obtained from Ti x Zr 1-x N(111)/SiN y systems. During annealing, the hardness of the best series samples was increased from (39.6 ± 1.4) to 53.6 GPa, which seemed to indicate that a spinodal segregation along grain interfaces was finished. A maximum hardness of 40.8 GPa before and 55 GPa after annealing in air at 500 °C was observed for coatings with a concentration of elements of Si≽ (7-8) at.%, Ti ≽ 22 at.% and Zr ⩽ 70 at.%.
منابع مشابه
A DFT and Molecular Dynamics Study on Inhibitory Action of Three Amine Derivatives on Corrosion of Carbon Steel
Inhibition efficiencies of three amine derivatives (Diethylenetriamine (I), Triethylenetetramine (II), and Pentaethylenehexamine (III)) have been studied on corrosion of carbon steel using density functional theory (DFT) method in gas phase. Quantum chemical parameters such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), hardness (η), po...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملFirst-Principles Investigation of Density of States and Electron Density in Wurtzite In0.5Ga0.5 N Alloys with GGA-PBEsol Method
In present work, we have calculated the electronic properties including density of states and electron density for GaN, InN and InxGa1-xN in wurtzite phase for x=0.5. The study is based on density functional theory with full potential linearized augmented plane wave method by generalized gradient approximation for calculating electronic properties. In this report we concluded that InxGa1-xN ba...
متن کاملBand-edge transitions in hexagonal boron nitride epilayers
Related Articles Effects of scattering on two-dimensional electron gases in InGaAs/InAlAs quantum wells J. Appl. Phys. 112, 023713 (2012) High efficiency ultraviolet emission from AlxGa1−xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy Appl. Phys. Lett. 101, 043115 (2012) Current transport in nonpolar a-plane InN/GaN heterostructures Schottky junction J. Appl....
متن کاملSize-dependent structural and electronic properties of Bi(111) ultrathin nanofilms from first principles
Few layer bismuth nanofilms with (111) orientation have shown striking electronic properties, especially as building blocks of novel two-dimensional heterostructures. In this paper we present state-of-the-art first principles calculations, based on both density functional theory and maximally localized Wannier functions, that encompass electronic and structural properties of free-standing Bi(11...
متن کامل