Performance Analysis of Event Detection Models in Crowded Scenes

نویسندگان

  • Ernesto L. Andrade
  • Scott Blunsden
چکیده

This paper evaluates an automatic technique for detection of abnormal events in crowds. Crowd behaviour is difficult to predict and might not be easily semantically translated. Moreover it is difficult to track individuals in the crowd using state of the art tracking algorithms. Therefore we characterise crowd behaviour by observing the crowd optical flow and use unsupervised feature extraction to encode normal crowd behaviour. The unsupervised feature extraction applies spectral clustering to find the optimal number of models to represent normal motion patterns. The motion models are HMMs to cope with the variable number of motion samples that might be present in each observation window. The results on simulated crowds analyse the robustness of the approach for detecting crowd emergency scenarios observing the crowd at local and global levels. The results on normal real data show the effectiveness in modelling the more diverse behaviour present in normal crowds. These results improve our previous work [1] in the detection of anomalies in pedestrian data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Anomaly Detection Based on Local Nearest Neighbor Distance Descriptor in Crowded Scenes

We propose a novel local nearest neighbor distance (LNND) descriptor for anomaly detection in crowded scenes. Comparing with the commonly used low-level feature descriptors in previous works, LNND descriptor has two major advantages. First, LNND descriptor efficiently incorporates spatial and temporal contextual information around the video event that is important for detecting anomalous intera...

متن کامل

Abnormal event detection in crowded scenes via bag-of-atomic-events-based topic model

In this paper, we propose a novel framework for abnormal event detection in crowded scenes. A new concept of atomic event is introduced into this framework, which is the basic component of video events. Different from previous bag-of-words (BoW) modeling-based methods that represent feature descriptors using only one code word, a feature descriptor is represented using a few more atomic events ...

متن کامل

Real-time video event detection in crowded scenes using MPEG derived features: A multiple instance learning approach

This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors...

متن کامل

Traffic Scene Analysis using Hierarchical Sparse Topical Coding

Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006