Porphyrin self-assembly at electrochemical interfaces: role of potential modulated surface mobility.

نویسندگان

  • Yufan He
  • Tao Ye
  • Eric Borguet
چکیده

The self-assembly of 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (TPyP) on Au(111) electrodes was investigated. The adlayer structure was found to depend on the electrode potential. At positive potentials (>0.5V(SCE)), a disordered layer of TPyP is formed on the Au(111) electrode. STM images showed that the disordered molecules are immobile. At negative potentials (-0.2V(SCE)), however, the molecules are highly mobile and can no longer be imaged by STM, though they remain on the surface. At intermediate potentials (-0.2 to +0.2V(SCE)), the TPyP formed a highly ordered adlayer. Once the ordered adlayer is formed, it persists even after the potential is stepped to higher values (0.5-0.8 V(SCE)). These results can be explained by the role of potential modulated adsorbate-substrate interaction and surface mobility. This suggests the intriguing prospect of using electrode potential to tune surface interactions and to drive surface processes, e.g., molecular self-assembly, in electrochemical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of protonation of pyridine moieties on the 2D assembly of porphyrin layers on Au(111) at electrochemical interfaces.

Unique molecular assemblies of a porphyrin derivative are prepared on Au(111) by controlling the protonation/unprotonation of the pyridine groups. The porphyrin derivative, driven by the protonation of the pyridine groups, can provide characteristic assemblies with specific molecular conformations on an Au(111) surface at the electrochemical interface. In situ scanning tunneling microscopy imag...

متن کامل

2-Dimensional porphyrin self-assemblies at molecular interfaces.

The heterodimer formed by electrostatic association of zinc(II) meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP) and zinc(II) meso-tetrakis(p-sulfonatophenyl)porphyrin (ZnTPPS) exhibits a strong affinity for the interface between water and 1,2-dichloroethane (DCE). Surface tension measurements using the quasi-elastic light scattering (QELS) technique reveal that the heterodimer adsorption can ...

متن کامل

Recent developments in the coordination chemistry of porphyrin complexes containing non-metallic and semi- metallic elements

The tremendous potential for the manifold applications of porphyrins, porphyrazines, and phthalocyanines derives from their photophysical and electrochemical properties, their remarkable stability, and their predictable and rigid structure. These applications include nonlinear optics, catalysts, sensors, actuators, molecular sieves, and therapeutics. All of these properties are modulated by app...

متن کامل

Molecular Self-Assembly at Metal-Electrolyte Interfaces

The self-assembly of molecular layers has become an important strategy in modern design of functional materials. However, in particular, large organic molecules may no longer be sufficiently volatile to be deposited by vapor deposition. In this case, deposition from solution may be a promising route; in ionic form, these molecules may even be soluble in water. In this contribution, we present a...

متن کامل

Self-assembly of insoluble porphyrins on Au(111) under aqueous electrochemical control.

Self-assembled monolayers of a water-insoluble porphyrin, tetraphenyl porphyrin (TPP), in the presence of an aqueous electrolyte were characterized in situ with electrochemical scanning tunneling microscopy (EC-STM) at working electrode potentials of between 0.5 and -0.2 V. Isolated domains of TPP monolayers with differing orientation were observed on Au(111) in 0.1 M HClO(4) over this entire p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 124 40  شماره 

صفحات  -

تاریخ انتشار 2002