Characterization of the CCT family and analysis of gene expression in Aegilops tauschii
نویسندگان
چکیده
Flowering is crucial for reproductive success in flowering plant. The CCT domain-containing genes widely participate in the regulation of flowering process in various plant species. So far, the CCT family in common wheat is largely unknown. Here, we characterized the structure, organization, molecular evolution and expression of the CCT genes in Aegilops tauschii, which is the D genome donor of hexaploid wheat. Twenty-six CCT genes (AetCCT) were identified from the full genome of A. tauschii and these genes were distributed on all 7 chromosomes. Phylogenetic analysis classified these AetCCT genes into 10 subgroups. Thirteen AetCCT members in group A, C, H and G achieved rapid evolution based on evolutionary rate analysis. The AetCCT genes respond to different exogenous hormones and abiotic treatments, the expression of AetCCT4, 7, 8, 11, 12, 16, 17, 19, 21 and 22 showed a significant 24 h rhythm. This study may provide a reference for common wheat's evolution, domestication and evolvement rules, and also help us to understand the ecological adaptability of A. tauschii.
منابع مشابه
Characterization and expression analysis of WOX2 homeodomain transcription factor in Aegilops tauschii
The WUSCHEL (WUS)-related homeobox (WOX) gene family coordinates transcription during the early phases of embryogenesis. In this study, a putative WOX2 homolog was isolated and characterized from Aegilops tauschii, the donor of D genome of Triticum aestivum. The sequence consisted of 2045 bp, and contained an open reading frame (ORF), encoded 322 amino acids. The predicted protein sequence cont...
متن کاملDissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii
As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due t...
متن کاملAetMYC1, the Candidate Gene Controlling the Red Coleoptile Trait in Aegilops tauschii Coss. Accession As77.
The red coleoptile trait can help monocotyledonous plants withstand stresses, and key genes responsible for the trait have been isolated from Triticum aestivum, Triticum urartu, and Triticum monococcum, but no corresponding research has been reported for Aegilops tauschii. In this research, transcriptome analysis was performed to isolate the candidate gene controlling the white coleoptile trait...
متن کاملIn Silico Characterization of Proteins Containing ARID-PHD Domain and Its Expression in Aeluropus littoralis Halophyte
Abiotic stresses are the most important factors that reduce the yield of crops. In this case, Bioinformatics analysis plays an important role to study genes, and their relatedness as well as prediction their function in response to abiotic stresses. Among all domains, ARID-PHD domain has been identified in plants and animals and has a very significant role in growth regulation, cell cycle, and ...
متن کاملEvolutionary Relationship of Wheat Protein Disulphide Isomerase (PDI) Gene Promoter Sequence Based on Phylogenetic Analysis
Protein disulphide isomerase (PDI) is an oxidoreductase enzyme abundant in the endoplasmic reticulum (ER). In plants, PDIs have been shown to assist the folding and deposition of seed storage proteins during the biogenesis of protein bodies in the endosperm. Cloning and characterization of the complete set of genes encoding PDI and PDI like proteins in bread wheat (Triticum aestivum cv. Chinese...
متن کامل