Presentation, error analysis and numerical experiments on a group of 1-step-ahead numerical differentiation formulas

نویسندگان

  • Yunong Zhang
  • Yao Chou
  • Jinhao Chen
  • Zhijun Zhang
  • Lin Xiao
چکیده

In order to achieve higher computational precision in approximating the first-order derivative of the target point, the 1-step-ahead numerical differentiation formulas are presented. These formulas greatly remedy some intrinsic weaknesses of the backward numerical differentiation formulas, and overcome the limitation of the central numerical differentiation formulas. In addition, a group of formulas are proposed to obtain the optimal step length. Moreover, the error analysis of the 1-step-ahead numerical differentiation formulas and the backward numerical differentiation formulas is further investigated. Numerical studies show that the proposed optimal step-length formulas are effective, and the performance of the 1-step-ahead numerical differentiation formulas is much better than that of the backward numerical differentiation formulas in the first-order derivative approximation. © 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid method with optimal stability properties for the numerical solution of stiff differential systems

In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...

متن کامل

Camparison of Numerically Stability of Two Algorithms for the Calculation of Variance

In descriptive statistics, there are two computational algorithms for determining the variance S2, of a set of observations : Algorithm 1: S2= - , Algorithm 2: S2= , where . It is interesting to discuss, which of the above formulas is numerically more trustworthy in machine numbers sets. I this paper, based on total effect of rounding error, we prove that the second Algorithm is better...

متن کامل

A distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations

The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative  of Caputo type with order  and scale index . We es...

متن کامل

ON THE STATIONARY PROBABILITY DENSITY FUNCTION OF BILINEAR TIME SERIES MODELS: A NUMERICAL APPROACH

In this paper, we show that the Chapman-Kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a Markov bilinear model. The stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.

متن کامل

Exponential Fitting of Matricial Multistep Methods for Ordinary Differential Equations

We study a class of explicit or implicit multistep integration formulas for solving N X N systems of ordinary differential equations. The coefficients of these formulas are diagonal matrices of order N, depending on a diagonal matrix of parameters Q of the same order. By definition, the formulas considered here are exact with respect to y = Dy + 4>(x, y) provided Q — hD, h is the integration st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 239  شماره 

صفحات  -

تاریخ انتشار 2013