Geodesic Monte Carlo on Embedded Manifolds

نویسندگان

  • Simon Byrne
  • Mark Girolami
چکیده

Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton-Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Principal Geodesic Analysis

Principal geodesic analysis (PGA) is a generalization of principal component analysis (PCA) for dimensionality reduction of data on a Riemannian manifold. Currently PGA is defined as a geometric fit to the data, rather than as a probabilistic model. Inspired by probabilistic PCA, we present a latent variable model for PGA that provides a probabilistic framework for factor analysis on manifolds....

متن کامل

Stochastic Gradient Geodesic MCMC Methods

We propose two stochastic gradient MCMC methods for sampling from Bayesian posterior distributions defined on Riemann manifolds with a known geodesic flow, e.g. hyperspheres. Our methods are the first scalable sampling methods on these manifolds, with the aid of stochastic gradients. Novel dynamics are conceived and 2nd-order integrators are developed. By adopting embedding techniques and the g...

متن کامل

Ricci tensor for $GCR$-lightlike submanifolds of indefinite Kaehler manifolds

We obtain the expression of Ricci tensor for a $GCR$-lightlikesubmanifold of indefinite complex space form and discuss itsproperties on a totally geodesic $GCR$-lightlike submanifold of anindefinite complex space form. Moreover, we have proved that everyproper totally umbilical $GCR$-lightlike submanifold of anindefinite Kaehler manifold is a totally geodesic $GCR$-lightlikesubmanifold.

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Importance sampling for quantum Monte Carlo in manifolds: addressing the time scale problem in simulations of molecular aggregates.

Several importance sampling strategies are developed and tested for stereographic projection diffusion Monte Carlo in manifolds. We test a family of one parameter trial wavefunctions for variational Monte Carlo in stereographically projected manifolds which can be used to produce importance sampling. We use the double well potential in one dimensional Euclidean space to study systematically sam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2013