A Matched Alternating Direction Implicit (ADI) Method for Solving the Heat Equation with Interfaces

نویسنده

  • Shan Zhao
چکیده

A novel Douglas alternating direction implicit (ADI) method is proposed in this work to solve a two-dimensional (2D) heat equation with interfaces. The ADI scheme is a powerful finite difference method for solving parabolic equations, due to its unconditional stability and high efficiency. However, it suffers from a serious accuracy reduction in space for interface problems with different materials and nonsmooth solutions. If the jumps in a function and its derivatives are known across the interface, rigorous ADI schemes have been successfully constructed in the literature based on the immersed interface method so that the spatial accuracy can be restored. Nevertheless, the development of accurate and stable ADImethods for general parabolic interface problems with physical interface conditions that describe jumps of a function and its flux, remains unsolved. To overcome this difficulty, a novel tensor product decomposition is proposed in this paper to decouple 2D jump conditions into essentially one-dimensional (1D) ones. These 1D conditions can then be incorporated into the ADI central difference discretization, using the matched interface and boundary technique. Fast algebraic solvers for perturbed tridiagonal systems are developed to maintain the computational efficiency. Stability analysis is conducted through eigenvalue spectrum analysis, which numerically demonstrates the unconditional stability of the proposed ADI method. The matched ADI scheme achieves the first order of accuracy in time and second order of accuracy in space in all tested parabolic interface problems with complex geometries and spatial-temporal dependent jump conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high accuracy variant of the iterative alternating decomposition explicit method for solving the heat equation

Abstract: We consider three level difference replacements of parabolic equations focusing on the heat equation in two space dimensions. Through a judicious splitting of the approximation, the scheme qualifies as an alternating direction implicit (ADI) method. Using the well known fact of the parabolic-elliptic correspondence, we shall derive a two stage iterative procedure employing a fractiona...

متن کامل

An Alternating Direction Implicit Method for Modeling of Fluid Flow

This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...

متن کامل

A matched Peaceman-Rachford ADI method for solving parabolic interface problems

A new Peaceman–Rachford alternating direction implicit (PR-ADI) method is proposed in this work for solving two-dimensional (2D) parabolic interface problems with discontinuous solutions. The classical ADI schemes are known to be inaccurate for handling interfaces. This motivates the development of a matched Douglas ADI (D-ADI) method in the literature, in which the finite difference is locally...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2015