Elementary landscape decomposition of the 0-1 unconstrained quadratic optimization

نویسندگان

  • Francisco Chicano
  • Enrique Alba
چکیده

Landscapes’ theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of a especial kind of landscape called elementary landscape. The elementary landscape decomposition of a combinatorial optimization problem is a useful tool for understanding the problem. Such decomposition provides an additional knowledge on the problem that can be exploited to explain the behavior of some existing algorithms when they are applied to the problem or to create new search methods for the problem. In this paper we analyze the 0-1 Unconstrained Quadratic Optimization from the point of view of landscapes’ theory. We prove that the problem can be written as the sum of two elementary components and we give the exact expressions for these components. We use the landscape decomposition to compute autocorrelation measures of the problem, and show some practical applications of the decomposition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Methodology to Find the Elementary Landscape Decomposition of Combinatorial Optimization Problems

A small number of combinatorial optimization problems have search spaces that correspond to elementary landscapes, where the objective function f is an eigenfunction of the Laplacian that describes the neighborhood structure of the search space. Many problems are not elementary; however, the objective function of a combinatorial optimization problem can always be expressed as a superposition of...

متن کامل

A limited memory adaptive trust-region approach for large-scale unconstrained optimization

This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...

متن کامل

Elementary Landscape Decomposition of the Hamiltonian Path Optimization Problem,

There exist local search landscapes where the evaluation function is an eigenfunction of the graph Laplacian that corresponds to the neighborhood structure of the search space. Problems that display this structure are called “Elementary Landscapes” and they have a number of special mathematical properties. The problems that are not elementary landscapes can be decomposed in a sum of elementary ...

متن کامل

A polynomial case of unconstrained zero-one quadratic optimization

Unconstrained zero-one quadratic maximization problems can be solved in polynomial time when the symmetric matrix describing the objective function is positive semidefinite of fixed rank with known spectral decomposition.

متن کامل

Autocorrelation measures for the quadratic assignment problem

In this article we provide an exact expression for computing the autocorrelation coefficient ξ and the autocorrelation length ℓ of any arbitrary instance of the Quadratic Assignment Problem (QAP) in polynomial time using its elementary landscape decomposition. We also provide empirical evidence of the autocorrelation length conjecture in QAP and compute the parameters ξ and ℓ for the 137 instan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Heuristics

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2013