Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs

نویسندگان

  • Markus Püschel
  • José M. F. Moura
چکیده

This paper presents a systematic methodology based on the algebraic theory of signal processing to classify and derive fast algorithms for linear transforms. Instead of manipulating the entries of transform matrices, our approach derives the algorithms by stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebraic principles that generalize the wellknown Cooley-Tukey FFT and make the algorithms’ derivations concise and transparent. Application to the 16 discrete cosine and sine transforms yields a large class of fast algorithms, many of which have not been found before.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Real DFTs

In this paper we systematically derive a large class of fast general-radix algorithms for various types of real discrete Fourier transforms (real DFTs) including the discrete Hartley transform (DHT) based on the algebraic signal processing theory. This means that instead of manipulating the transform definition, we derive algorithms by manipulating the polynomial algebras underlying the transfo...

متن کامل

Cooley-Tukey FFT like algorithms for the DCT

The Cooley-Tukey FFT algorithm decomposes a discrete Fourier transform (DFT) of size n = km into smaller DFTs of size k and m. In this paper we present a theorem that decomposes a polynomial transform into smaller polynomial transforms, and show that the FFT is obtained as a special case. Then we use this theorem to derive a new class of recursive algorithms for the discrete cosine transforms (...

متن کامل

DFT and FFT: An Algebraic View

In infinite, or non-periodic, discrete-time signal processing, there is a strong connection between the z-transform, Laurent series, convolution, and the discrete-time Fourier transform (DTFT) [10]. As one may expect, a similar connection exists for the DFT but bears surprises. Namely, it turns out that the proper framework for the DFT requires modulo operations of polynomials, which means work...

متن کامل

Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for Polynomial Transforms Based on Induction

A polynomial transform is the multiplication of an input vector x ∈ C by a matrix Pb;α ∈ Cn×n; whose ðk;lÞth element is defined as plðαkÞ for polynomials plðxÞ ∈ C1⁄2x from a list b 1⁄4 fp0ðxÞ; : : : ; pn−1ðxÞg and sample points αk ∈ C from a list α 1⁄4 fα0; : : : ;αn−1g. Such transforms find applications in the areas of signal processing, data compression, and function interpolation. An import...

متن کامل

The Cooley–Tukey FFT and Group Theory

In 1965 J. Cooley and J. Tukey published an article detailing an efficient algorithm to compute the Discrete Fourier Transform, necessary for processing the newly available reams of digital time series produced by recently invented analog-to-digital converters. Since then, the Cooley– Tukey Fast Fourier Transform and its variants has been a staple of digital signal processing. Among the many ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2008