Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions.
نویسندگان
چکیده
Mechanical cues can influence the manner in which cells generate traction forces and form focal adhesions. The stiffness of a cell's substrate and the available area on which it can spread can influence its generation of traction forces, but to what extent these factors are intertwined is unclear. In this study, we used microcontact printing and micropost arrays to control cell spreading, substrate stiffness, and post density to assess their effect on traction forces and focal adhesions. We find that both the spread area and the substrate stiffness influence traction forces in an independent manner, but these factors have opposite effects: cells on stiffer substrates produce higher average forces, whereas cells with larger spread areas generate lower average forces. We show that post density influences the generation of traction forces in a manner that is more dominant than the effect of spread area. Additionally, we observe that focal adhesions respond to spread area, substrate stiffness, and post density in a manner that closely matches the trends seen for traction forces. This work supports the notion that traction forces and focal adhesions have a close relationship in their response to mechanical cues.
منابع مشابه
Geometry regulates traction stresses in adherent cells.
Cells generate mechanical stresses via the action of myosin motors on the actin cytoskeleton. Although the molecular origin of force generation is well understood, we currently lack an understanding of the regulation of force transmission at cellular length scales. Here, using 3T3 fibroblasts, we experimentally decouple the effects of substrate stiffness, focal adhesion density, and cell morpho...
متن کاملContractile stresses in cohesive cell layers on finite-thickness substrates.
Using a minimal model of cells or cohesive cell layers as continuum active elastic media, we examine the effect of substrate thickness and stiffness on traction forces exerted by strongly adhering cells. We obtain a simple expression for the length scale controlling the spatial variation of stresses in terms of cell and substrate parameters that describes the crossover between the thin and thic...
متن کاملIn silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus.
Cell adhesion is crucial for many types of cell, conditioning differentiation, proliferation, and protein synthesis. As a mechanical process, cell adhesion involves forces exerted by the cytoskeleton and transmitted by focal adhesions to extracellular matrix. These forces constitute signals that infer specific biological responses. Therefore, analyzing mechanotransduction during cell adhesion c...
متن کاملEffects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin–paxillin recruitment at single focal adhesions
Focal adhesions (FAs) regulate force transfer between the cytoskeleton and ECM-integrin complexes. We previously showed that vinculin regulates force transmission at FAs. Vinculin residence time in FAs correlated with applied force, supporting a mechanosensitive model in which forces stabilize vinculin's active conformation to promote force transfer. In the present study, we examined the relati...
متن کاملNascent Focal Adhesions Are Responsible for the Generation of Strong Propulsive Forces in Migrating Fibroblasts
Fibroblast migration involves complex mechanical interactions with the underlying substrate. Although tight substrate contact at focal adhesions has been studied for decades, the role of focal adhesions in force transduction remains unclear. To address this question, we have mapped traction stress generated by fibroblasts expressing green fluorescent protein (GFP)-zyxin. Surprisingly, the overa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 103 4 شماره
صفحات -
تاریخ انتشار 2012